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Preface

The 33rd International Conference “Workshop on Graph-Theoretic Concepts
in Computer Science” (WG 2007) took place in the Conference Center in old
castle in Dornburg near Jena, Germany, June 21–23, 2007. The approximately 80
participants came from various countries all over the world, among them Brazil,
Canada, the Czech Republic, France, UK, Greece, Hungary, Italy, Japan, The
Netherlands, Norway, Sweden, Taiwan, and the USA.

WG 2007 continued the series of 32 previous WG conferences. Since 1975,
the WG conference has taken place 20 times in Germany, four times in The
Netherlands, twice in Austria as well as once in Italy, Slovakia, Switzerland, the
Czech Republic, France and in Norway.

The WG conference traditionally aims at uniting theory and practice by
demonstrating how graph-theoretic concepts can be applied to various areas in
computer science, or by extracting new problems from applications. The goal is
to present recent research results and to identify and explore directions of future
research.

The continuing interest in the WG conferences was reflected in the high num-
ber of submissions; 99 papers were submitted and in an evaluation process with
four reports per submission, 30 papers were accepted by the Program Commit-
tee for the conference. Due to the high number of submissions and the limited
schedule of 3 days, various good papers could not be accepted.

There were invited talks by Ming-Yang Kao (Evanston, Illinois) on algorith-
mic DNA assembly, and by Klaus Jansen (Kiel, Germany) on approximation
algorithms for geometric intersection graphs.

We are grateful to all those who contributed to WG 2007: First of all, the
authors submitting so many good papers, the numerous referees, the speakers,
the Program Committee, the Organizing Committee (special thanks go to Katrin
Erdmann and Roswitha Fengler, Rostock, to Mathieu Liedloff, Metz, as well as
to Nadja Betzler, Falk Hüffner and Marita Venth, Jena, and the whole group of
Rolf Niedermeier for hosting WG 2007 in the wonderful Conference Center in
the old castle in Dornburg) and last but not least, to our sponsors the German
Research Council (DFG), Land Thüringen, Universität Jena, and Stiftung für
Innovation, Technologie und Forschung Thüringen (STIFT) as well as to the
Universities of Leeds, Metz and Rostock.

October 2007 Andreas Brandstädt
Dieter Kratsch

Haiko Müller
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1981 J. Mühlbacher – Linz, Austria
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Falk Hüffner
Christian Hundt
Hiro Ito
Mark Jerrum

Matthew Johnson
Iyad Kanj
Ragnar Karlsson
Ekkehard Köhler
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Computational Complexity of Generalized

Domination:
A Complete Dichotomy for Chordal Graphs

Petr Golovach1,� and Jan Kratochv́ıl2,��

1 Department of Informatics, University of Bergen, 5020 Bergen, Norway
petrg@ii.uib.no

2 Department of Applied Mathematics and Institute for Theoretical
Computer Science, Charles University, Prague, Czech Republic

honza@kam.mff.cuni.cz

Abstract. The so called (σ, ρ)-domination, introduced by J.A. Telle, is
a concept which provides a unifying generalization for many variants of
domination in graphs. (A set S of vertices of a graph G is called (σ, ρ)-
dominating if for every vertex v ∈ S, |S ∩N(v)| ∈ σ, and for every v /∈ S,
|S ∩ N(v)| ∈ ρ, where σ and ρ are sets of nonnegative integers and N(v)
denotes the open neighborhood of the vertex v in G.) It was known that
for any two nonempty finite sets σ and ρ (such that 0 /∈ ρ), the deci-
sion problem whether an input graph contains a (σ, ρ)-dominating set is
NP-complete, but that when restricted to chordal graphs, some polyno-
mial time solvable instances occur. We show that for chordal graphs, the
problem performs a complete dichotomy: it is polynomial time solvable
if σ, ρ are such that every chordal graph contains at most one (σ, ρ)-
dominating set, and NP-complete otherwise. The proof involves certain
flavor of existentionality - we are not able to characterize such pairs (σ, ρ)
by a structural description, but at least we can provide a recursive al-
gorithm for their recognition. If ρ contains the 0 element, every graph
contains a (σ, ρ)-dominating set (the empty one), and so the nontrivial
question here is to ask for a maximum such set. We show that MAX-
(σ, ρ)-domination problem is NP-complete for chordal graphs whenever
ρ contains, besides 0, at least one more integer.

Keywords: Computational complexity, graph algorithms.

1 Introduction and Overview of Results

We consider finite undirected graphs without loops or multiple edges. The vertex
set of a graph G is denoted by V (G) and its edge set by E(G). The open
neighborhood of a vertex is denoted by N(u) = {v : uv ∈ E(G)}. A graph is
chordal if it does not contain an induced cycle of length greater than three.
� On leave from Department of Applied Mathematics, Syktyvkar State University,

Syktyvkar, Russia. Most of the results were obtained during the research stay of the
first author at DIMATIA Prague in 2006.

�� Supported by the Czech Ministry of Education as Research Project No. 1M0545.

A. Brandstädt, D. Kratsch, and H. Müller (Eds.): WG 2007, LNCS 4769, pp. 1–11, 2007.
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2 P. Golovach and J. Kratochv́ıl

1.1 (σ, ρ)-Domination

Let σ, ρ be a pair of nonempty sets of nonnegative integers. A set of vertices
of G is called (σ, ρ)-dominating if for every vertex v ∈ S, |S ∩ N(v)| ∈ σ, and
for every v /∈ S, |S ∩ N(v)| ∈ ρ. The concept of (σ, ρ)-domination was intro-
duced by J.A. Telle [14,15] (and further elaborated on in [12,9]) as a unifying
generalization of many previously studied variants of the notion of dominating
sets (see [8] for an extensive bibliography on domination in graphs). In particu-
lar, (N0,N)-dominating sets are ordinary dominating sets, ({0},N0)-dominating
sets are independent sets, (N0,{1})-dominating sets are efficient dominating sets,
({0},{1})-dominating sets are 1-perfect codes (or independent efficient dominat-
ing sets), ({0},{0, 1})-dominating sets are strong stable sets, ({0},N)-dominating
sets are independent dominating set, ({1},{1})-dominating sets are total perfect
dominating set, or ({r},N0)-dominating sets are induced r-regular subgraphs (N
and N0 denote the sets of positive and nonnegative integers, respectively).

We are interested in the complexity of the problem of existence of a (σ, ρ)-
dominating set in an input graph, and we denote this problem by ∃(σ, ρ)-
domination. It can be easily seen that if 0 ∈ ρ, then the ∃(σ, ρ)-domination

problem has a trivial solution S = ∅. So throughout the main part of the paper
(and unless not explicitly stated otherwise) we suppose that 0 /∈ ρ.

1.2 Our Results

In view of the above given examples, it is not surprising that for any nontriv-
ial combination of finite sets σ and ρ (considered as fixed parameters of the
problem), ∃(σ, ρ)-domination is NP-complete [14]. It is then natural to pay at-
tention to restricted graph classes for inputs of the problem. It was observed in
[11] that for any pair of finite sets σ and ρ, the problem is solvable in polynomial
time for interval graphs, but that it becomes NP-complete when restricted to
chordal graphs (for some parameter sets σ and ρ). In particular, it was shown
that for one-element sets σ = {p}, ρ = {q}, ∃(σ, ρ)-domination is polynomial
time solvable if q > 2p + 1 and NP-complete if q ≤ p + 1. We close this gap by
showing that all the remaining cases are also polynomial time solvable. More-
over, we extend this polytime/NP-completeness dichotomy to any pair of finite
sets σ, ρ by showing the following characterization:

Theorem A. For finite sets σ, ρ, ∃(σ, ρ)-domination is polynomial time solv-
able for chordal graphs if every chordal graph has at most one (σ, ρ)-dominating
set, and it is NP-complete otherwise.

This theorem provides a full characterization and dichotomy, with both the poly-
nomial time solvable and NP-complete cases including nontrivial and interesting
samples (as we show by discussing some examples in Section 4). Dichotomy re-
sults are valued and intensively looked for (e.g., the classification of Boolean
satisfiability by Schaefer [13], further dichotomy results for larger classes of the
Constraint Satisfaction Problem by Bulatov et al. [2] paving the way to the
utmost CSP dichotomy conjecture of Feder and Vardi [4], or several results for
graph homomorphisms [10,3,6,5].) The characterization is nonconstructive in the
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sense that we are not able to provide a structural description of ambivalent (or
non-ambivalent) pairs σ, ρ (we call a pair σ, ρ ambivalent if there exists a chordal
graph containing two different (σ, ρ)-dominating sets), and there is indication
that such a description will not be simple. Indeed, for any pair of σ and ρ, there
are infinitely many chordal graphs to be checked if any of them, by chance,
contains two different (σ, ρ)-dominating sets. Perhaps somewhat surprisingly we
show that this fact can be overcome at least from the computational point of
view:

Theorem B. It can be decided in finite time (i.e., by a recursive algorithm)
whether for a given pair of finite sets σ, ρ, there exists a chordal graph containing
two different (σ, ρ)-dominating sets.

The NP-hardness part of Theorem A is proved in Section 2 by a reduction from a
variant of the Exact Cover problem. Its polynomial part is proved in Section 3
by providing an explicit dynamic programming algorithm. Theorem B is proved
by providing an explicit upper bound on the minimum size of an ambivalent
graph in Section 4. In Section 5, we discuss the case when 0 ∈ ρ. As we have
already mentioned, the ∃(σ, ρ)-domination problem is then trivial (the empty
set is always (σ, ρ)-dominating), and the natural question here is the optimization
variant. However, we show this is always a hard problem:

Theorem C. Given a chordal graph graph G and a number k, it is NP-complete
to decide if G contains a (σ, ρ)-dominating set of size at least k, provided σ, ρ
are finite sets of nonnegative integers and ρ �= {0}.

Throughout the paper n = |V (G)|, pmin = min σ, pmax = max σ, qmin = min ρ
and qmax = max ρ, where G is the graph and σ, ρ the sets under consideration.
In case of single-element sets σ or ρ, we write simply p = pmin = pmax and
q = qmin = qmax.

2 NP-Complete Cases

This section is devoted to the proof of the following theorem.

Theorem 1. Let σ, ρ be finite sets of nonnegative integers, 0 /∈ ρ. If there is a
chordal graph with at least two different (σ, ρ)-dominating sets, then the ∃(σ, ρ)-
domination problem is NP-complete for chordal graphs.

2.1 An Auxiliary Complexity Lemma

We are going to reduce from a special variant of the Cover by triples problem
(or Exact Cover)(see [7]).

Let r be a positive integer. An instance of the Cover by no more than r
triples is a pair (X, M), where X is a nonempty finite set and M is a set of
triples of elements of X . We ask about the existence of a set M ′ ⊂ M such that
every element of X belongs to at least one and to at most r triples of M ′. Such
a set we call a cover of X by no more than r triples. For space limitations the
proof of the following auxiliary lemma is omitted.
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Lemma 1. For every fixed r ≥ 1, the Cover by no more than r triples

problem is NP-complete.

2.2 The Forcing Gadget

Our next step of the proof is the construction of a gadget which “enforces” on a
given vertex the property of “not belonging to any (σ, ρ)-dominating set”.

It is known (cf. [11]) that if qmin ≥ 2pmax+2, then every chordal graph contains
at most one (σ, ρ)-dominating set. Hence we assume that qmin ≤ 2pmax + 1. We
construct a rooted graph F as follows.

Suppose first that qmin ≤ pmax + 1. We start with a complete graph Kpmax+1
with vertices u1, u2, . . . , upmax+1. Let {S1, S2, . . . , St} be a set of qmin-tuples
which covers the set {u1, u2, . . . , upmax+1} (i.e., each uj belongs to at least one
Si). For every i = 1, 2, . . . , t, we add qmax + 1 new vertices v

(i)
1 , v

(i)
2 , . . . , v

(i)
qmax+1

and connect them to all vertices of Si by edges.
If qmin > pmax + 1, the construction is slightly different. We again start with

a complete graph Kpmax+1 with vertices u1, u2, . . . , upmax+1. We add qmax + 1 new
verticesv1, v2, . . . , vqmax+1 andqmax+1copiesofKpmax+1, sayQ1, Q2, . . . , Qqmax+1,
andconnecteveryvj byedgestoallverticesu1, u2, . . . , upmax+1 andtoqmin−pmax+1
vertices of the corresponding Qj .

In both cases the vertex u1 is the root of F .

Lemma 2. The graph F has at least one (σ, ρ)-dominating set, and for every
(σ, ρ)-dominating set S in F , u1, u2, . . . , upmax+1 ∈ S. Moreover, if F is an
induced subgraph of a graph F ′ such that u1 is the only vertex of F adjacent to
vertices of F ′\F , then the vertices of F ′\F that are adjacent to u1 do not belong
to any (σ, ρ)-dominating set in F ′.

Proof. Suppose that qmin ≤ pmax +1. Obviously {u1, u2, . . . , upmax+1} is a (σ, ρ)-
dominating set in F . For the second statement, assume that S is a (σ, ρ)-
dominating set in F and ui /∈ S for some i. Let Sj be a qmin-tuple which contains
ui. It is readily seen that v

(j)
1 , v

(j)
2 , . . . , v

(j)
qmax+1 ∈ S. But then ui is adjacent to

at least qmax + 1 vertices of S, a contradiction.
If qmin > pmax + 1, the proof of the second statement is similar. For the

first part, note that the vertices u1, u2, . . . , upmax+1 and all vertices of the added
cliques Qj form a (σ, ρ)-dominating set.

For the last statement, note that we have proved that in both cases u1 is in
S and has pmax neighbors in S, for any (σ, ρ)-dominating set S in F , but the
argument survives for any (σ, ρ)-dominating set in F ′ as well. 
�

2.3 The Reduction

Let H be a graph which has at least two different (σ, ρ)-dominating sets S, ˜S.
We choose a vertex u ∈ S ÷ ˜S, where ÷ denotes the symmetric difference of sets,
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and pronounce u the root of H . Let k = max{i ∈ N0 : i /∈ ρ, i + 1 ∈ ρ}. Since
0 /∈ ρ, k is correctly defined.

Let a set X = {x1, x2, . . . , xn} and a set M = {t1, t2, . . . , tm} of triples on
X be given as an instance of Cover by no more than r triples for r =
qmax − k > 0.

We start the construction of a graph G with a complete graph Kn with vertices
x1, x2, . . . , xn. For every triple ti = {xa, xb, xc}, a copy Hi of the graph H with
root ui is added, and ui is connected by edges to xa, xb, xc. If k = 0, we further
add qmax copies of the graph F with roots v1, v2, . . . , vqmax , add a new extra
vertex y, and join y with x1, x2, . . . , xn and v1, v2, . . . , vqmax by edges. If k > 0,
then k copies of F with roots v1, v2, . . . , vk are added, and vertices v1, v2, . . . , vk

are connected with x1, x2, . . . , xn by edges.
We claim that the graph G constructed in this way has a (σ, ρ)-dominating set

if and only if (X, M) allows a cover by no more than r triples. Since the graphs
H and F depend only on σ and ρ, G has O(n + m) vertices, our reduction is
polynomial and the proof will be concluded.

Suppose first that G has a (σ, ρ)-dominating set S. Let M ′ = {ti ∈ M : ui ∈
S}. If k = 0, then y /∈ S and v1, v2, . . . , vqmax ∈ S by Lemma 2. Hence
x1, x2, . . . , xn /∈ S. Since 0 /∈ ρ, for every i = 1, 2, . . . , n, the vertex xi has
at least one S-neighbor in the set {u1, u2, . . . , um}, but no more than r = qmax
such neighbors. So M ′ is a cover of X by no more than r triples.

If k > 0, then v1, v2, . . . , vk ∈ S and x1, x2, . . . , xn /∈ S by Lemma 2 again.
Since k /∈ ρ, for every i = 1, 2, . . . , n, the vertex xi has at least one S-neighbor in
the set {u1, u2, . . . , um}, but no more than r = qmax − k such neighbors. Hence
again, M ′ is a cover of X by no more than r triples.

Suppose now that M ′ ⊆ M is a cover of X by no more than r triples. For every
i = 1, 2, . . . , m, we choose a (σ, ρ)-dominating set Si in Hi such that ui ∈ Si if
and only if ti ∈ M ′. Let S′

1, S
′
2, . . . be (σ, ρ)-dominating sets in the copies of F .

Since {k + 1, k + 2, . . . , qmax} ⊆ ρ, S = S1 ∪ S2 ∪ · · · ∪ Sn ∪ S′
1 ∪ S′

2 ∪ . . . is a
(σ, ρ)-dominating set in G.

3 The Polynomial Cases

In this section we prove the complementary part of Theorem A by presenting a
polynomial time algorithm that decides the existence of a (σ, ρ)-dominating set
in a chordal graph, provided the parameters σ and ρ are such that every chordal
graph contains at most one (σ, ρ)-dominating set. It is perhaps of some interest
that our algorithm can be formulated in a general way so that it is based only
on the promise of a unique solution. On the contrary, in many situations the
assumption of uniqueness of the solution does not help.

In fact we present two algorithms in this section. In the first subsection we
give the general algorithm, and in the latter one we deal with a special case
of one-element set σ. The running time of the second algorithm is much better
and moreover, this algorithm explicitly closes the gap between polynomial and
NP-complete cases for single-element parameter sets left open in [11].
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3.1 The General Algorithm

In this subsection it is assumed that σ and ρ are such that every chordal graph
contains no more than one (σ, ρ)-dominating set. The algorithm uses dynamic
programming and is based on the clique-decomposition of the input graph.

Let K be the set of all maximal cliques of an input chordal graph G, and let T
be a clique tree of G, i.e., V (T ) = K and for every u ∈ V (G), the subgraph of T
induced by {K ∈ K : u ∈ K} is connected. It is well known (see, for example, [1])
that a clique tree of a chordal graph graph is not unique, but can be constructed
in linear time. We choose a clique R0 ∈ K and consider the clique tree T rooted
in R0. This induces a parent-child relation in the tree, in which all vertices are
descendants of the root. For any clique R ∈ K, we denote by TR the subtree of
T rooted in R and containing all descendants of R, and we denote by GR the
subgraph of G induced by the vertices contained in the cliques of V (TR).

The key idea of the algorithm is the fact that every clique R ∈ K contains at
most pmax + 1 vertices of any (σ, ρ)-dominating set, and hence for every clique
we can list all possible intersections with a solution set S in polynomial time.
We need to keep track of how many S-neighbors these vertices have. Towards
this end we build the following array. Let R ∈ K and let X = {x1, x2, . . . , xr}
be an ordered subset of R, 0 ≤ r ≤ pmax + 1 (X can also be empty). Further
let P = (p1, p2, . . . , pr) be a sequence of nonnegative integers, pi ≤ pmax for
i = 1, 2, . . . , r. For each such triple R, X, P , our algorithm constructs a set
S(R, X, P ) ⊆ V (GR) which satisfies

– S(R, X, P ) ∩ R = X ,
– |N(xi) ∩ S(R, X, P )| = pi for i = 1, 2, . . . , r,

– for every v ∈ V (GR) \ R, |N(v) ∩ S(R, X, P )| ∈
{

σ if v ∈ S(R, X, P ),
ρ if v /∈ S(R, X, P );

(i.e., S(R, X, P ) is a candidate for S ∩ V (GR)) or S(R, X, P ) =nil if we can
deduce that no such set can be extended to a solution S for the entire G. The
details of the algorithm will appear in the full version of the paper. The recursive
step is technical but straightforward. The crucial fact is that for each triple
R, X, P , we store at most one candidate set, which follows from the following
lemma.

Lemma 3. If S1 and S2 are distinct subsets of V (GR) satisfying the candidate
conditions for the same triple R, X, P , then none of them can be extended to a
(σ, ρ)-dominating set S in the entire graph G.

Proof. Suppose S1 can be extended to a (σ, ρ)-dominating set S. Then S and
(S \S1)∪S2 are two distinct (σ, ρ)-dominating sets in G[V (G) \ (R \ X)], which
is a contradiction to the assumption that every chordal graph contains at most
one (σ, ρ)-dominating set. 
�

The algorithm can be implemented to run in time O(np2
max+2pmax+3). Hence we

have proved the polynomial part of Theorem A:
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Theorem 2. If σ and ρ are finite sets such that every chordal graph contains at
most one (σ, ρ)-dominating set, then the ∃(σ, ρ)-Domination problem is solvable
in polynomial time for chordal graphs.

3.2 Single-Element Sigma

In the case when the set σ contains only one element, we are able to design
a more efficient greedy algorithm. This algorithm uses the simple structure of
(σ, ρ)-dominating sets in such a case.
Lemma 4. Let σ = {p}, let ρ be arbitrary and suppose that S is a (σ, ρ)-
dominating set in a chordal graph G. Then S is the union of disjoint cliques
of size p + 1, and vertices of different cliques are nonadjacent.

Proof. Let G[S] be the subgraph of G induced by S. This graph is chordal, so it
has a simplicial vertex. The closed neighborhood of this vertex is a clique of size
p + 1, and this clique is the vertex set of one component of G[S]. By repeating
these arguments we prove that all components of G[S] are induced by cliques of
size p + 1. 
�
Though we use the following observation for the case of single-element σ, we
state it in a more general form:
Lemma 5. Suppose that pmax + 2 ≤ qmin. Let S be a (σ, ρ)-dominating set in
G. Then all simplicial vertices of G belong to S.

Proof. Let v be a simplicial vertex of G. If v /∈ S, then |N(v)∩S| ∈ ρ, and since
pmax + 2 ≤ qmin, |N(v) ∩ S| ≥ pmax + 2. So S contains a clique of size pmax + 2,
a contradiction. 
�
The core observation for our algorithm is the following lemma, which is a
straightforward corollary of Lemmas 4 and 5.
Lemma 6. Let σ = {p} and let p + 2 ≤ qmin. Let S be a (σ, ρ)-dominating set
in a chordal graph G. Further let T be a clique tree of G, let X be a leaf of T ,
and Y the neighbor of X in T . Then

– |X \ Y | ≤ p + 1,
– if |X \ Y | = p + 1, then X \ Y ⊆ S and (Y ∩ X) ∩ S = ∅,
– if |X \ Y | < p + 1, then (Y \ X) ∩ S = ∅.

Given a chordal graph, our algorithm first builds a clique tree and then con-
secutively reduces it by deleting vertices which must or must not belong to any
(σ, ρ)-dominating set. In the final step it is necessary to check whether the only
candidate (if any) for S is really a (σ, ρ)-dominating set. The technical details will
again appear in the full version of the paper. We only note that with some extra
care the algorithm can be designed so that in each reduction step, a clique tree
of the reduced graph can be easily derived from the clique tree of the previous
one. Thus we can claim:

Theorem 3. If σ = {p} and p+2 ≤ qmin, then the (σ, ρ)-domination problem
can be solved in time O(n2).
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4 Uniqueness of (σ, ρ)-Dominating Sets

It would be most desirable to have a full classification of the pairs of parameter
sets σ, ρ for which there exist chordal graphs with two different (σ, ρ)-dominating
sets. Such a classification is not currently known and perhaps not easy to obtain.
In the first subsection of this section we summarize the known results in this
direction. A positive result is proven in the second subsection. We show a bound
on the size of a minimal chordal graph containing two different (σ, ρ)-dominating
sets, thus showing that the existence of such a graph can be decided by a finite
algorithm.

Recall that we call a pair (σ, ρ) ambivalent if there exists a graph containing
at least two different (σ, ρ)-dominating sets. Such a graph will be called (σ, ρ)-
ambivalent.

4.1 On the Way to Classification

First observation about the uniqueness of a (σ, ρ)-dominating set in a chordal
graph was made in [11]. More cases are covered by the following theorem, but the
picture is far from being complete. Fully characterized are the cases of σ = {p}
and σ = {0, pmax}.

Theorem 4. The following table presents examples of ambivalent and non-
ambivalent pairs of σ and ρ:

ambivalent non-ambivalent
qmin ≤ pmax + 1 qmin ≥ 2pmax + 2

∃i : {i, i + 1} ⊆ σ, qmin ≤ 2pmax + 1 σ = {p}, qmin ≥ p + 2
σ = {0, pmax}, qmin ≤ pmax + 2 σ = {0, pmax}, qmin ≥ pmax + 3

Proof. Will appear in the full version. 
�

4.2 Deciding the Ambivalence

The main goal of this subsection is to prove Theorem B. We do so by proving an
upper bound on the number of vertices of any minimum chordal graph containing
two different (σ, ρ)-dominating sets, in terms of pmax and qmax.

Theorem 5. Let σ, ρ be finite sets of nonnegative integers, 0 /∈ ρ. Suppose that
G is a minimum chordal (σ, ρ)-ambivalent graph. Then

– for every maximal clique K of G, |K| ≤ 2pmax + 2,
– for every vertex v ∈ V (G), deg v ≤ max{2pmax, pmax + qmax},
– the diameter of G is O(p2pmax+2qmax+7

max ).

Proof. Will appear in the full version. 
�
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Since every graph of maximum degree Δ and diameter d has at most Δd+1

vertices, we have proven the following corollary and hence also Theorem B.

Corollary 1. Let σ, ρ be finite sets of nonnegative integers, 0 /∈ ρ. Then the size
of every minimum (σ, ρ)-ambivalent chordal graph is bounded by a function of
pmax and qmax and the existence of such a graph can be tested algorithmically by
a finite procedure.

5 MAX-(σ, ρ)-Domination

So far we have been considering the question of existence of (σ, ρ)-dominating
sets. One could also pose the optimization questions, i.e., asking for the sizes of
minimum or maximum (σ, ρ)-dominating sets. Since optimization problems are
at least as difficult as the existence ones, and since the polynomial part of our
Theorem A is based on uniqueness of the solution, our results translate directly
to the optimization variants. Namely, if 0 /∈ ρ, then both Min-(σ, ρ)-domination

and Max-(σ, ρ)-domination problems are NP-hard when restricted to chordal
graphs for ambivalent (σ, ρ) and polynomial time solvable for the non-ambivalent
pairs.

If ρ = {0}, the only possible (σ, ρ)-dominating sets in a connected graph G
are S = ∅ and S = V (G). The latter is the maximum (σ, ρ)-dominating set if
deg v ∈ σ for every v ∈ V (G), otherwise S = ∅ is the only (and hence also the
maximum) (σ, ρ)-dominating set in G. This is, however, the only polynomially
solvable case, as Theorem C claims. The rest of this section is devoted to its
proof.

5.1 Proof of Theorem C

We begin with an auxiliary construction. Let F consist of qmax copies of the
complete graph Kpmax+1, say Q1, Q2, . . . , Qqmax , and one extra vertex r, the
root of F , which is adjacent to exactly one vertex from each Qi. The following
technical lemma is straightforward.

Lemma 7. The set S = V (Q1) ∪ V (Q2) ∪ · · · ∪ V (Qqmax) is a maximum (σ, ρ)-
dominating set in F , and it has cardinality qmax(pmax + 1). Moreover, suppose
that a graph F ′ is created by uniting F with some graph (with different vertices)
and joining the root of F to some new vertices u1, u2, . . . , us. If S′ is a (σ, ρ)-
dominating set in F ′, r /∈ S′, and ui ∈ S′ for some i, then |V (F ) ∩ S′| <
qmax(pmax + 1).

Now we prove Theorem C by a reduction from the Exact h-Cover problem,
whose is input is a pair (X, M), where X = {x1, x2, . . . , xn} is a finite set and
M = {t1, t2, . . . , tm} is a set of triples on X , and the question is if M contains
a subsystem M ′ ⊂ M such that every element of X belongs to exactly h triples
of M ′. This problem is NP-complete for every fixed h > 0 (cf. e.g., [11]). For
our reduction, we use h = qmax. For a given instance (X, M), we may assume
without loss of generality that nqmax = 3l and l ≤ m.
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We start the construction of a graph G with a complete graph Kn with vertices
x1, x2, . . . , xn. For every triple ti = {xa, xb, xc}, a copy Hi of the complete graph
Kpmin+1 is added, and one vertex of this graph is connected by edges to xa, xb, xc.
We further add s = (m − l)(pmin + 1) + 2pmax + 2 copies F1, . . . , Fs of the graph
F , with their roots r1, r2, . . . , rs being adjacent to all x1, x2, . . . , xn. This graph
G has m(pmin +1)+n+s(qmax(pmax +1)+1) vertices and it is constructed from
(X, M) in polynomial time. We claim that G contains a (σ, ρ)-dominating set of
size ≥ k = l(pmin + 1) + sqmax(pmax + 1) if and only if (X, M) contains an exact
qmax-cover.

Let first M ′ be a qmax-cover of X . Clearly, |M ′| = l, and it is straightforward
to check that S =

⋃

i: ti∈M ′ V (Hi) ∪
⋃s

i=1(V (Fi) \ {ri}) is a (σ, ρ)-dominating
set in G of cardinality k.

Assume now that S is a (σ, ρ)-dominating set in G, and |S| ≥ k. Suppose that
some vertex xj is in S. Then S can contain no more than m(pmin +1) vertices of
the graphs Hi, and no more than pmax +1 vertices from the set {x1, x2, . . . , xn}.
Also at least s − pmax vertices from {r1, r2, . . . , rs} do not belong to S. So,
according to the preceding lemma, |S| ≤ m(pmin+1)+pmax+1+pmaxqmax(pmax+
1)+(s−pmax)(qmax(pmax +1)−1) = m(pmin+1)+2pmax+1+sqmax(pmax +1)−
(m − l)(pmin + 1) − 2pmax − 2 = l(pmin + 1) + sqmax(pmax + 1) − 1 < k. So, none
of the vertices x1, x2, . . . , xn belongs to S. Note that in this case V (Hi) ⊂ S or
V (Hi) ∩ S = ∅ for all i = 1, 2, . . . , m, and vertices of no more than l graphs Hi

belong to S. Since S can contain no more than qmax(pmax+1) vertices from every
graph Fi, and |S| ≥ k, vertices of exactly l graphs Hi are included to S. Every
vertex xj can have no more than qmax adjacent vertices from S. Hence each xj

is adjacent to exactly qmax vertices from Hi’s and the set M ′ = {ti : V (Hi) ⊂ S}
is a qmax-cover of X .

6 Concluding Remarks and Open Problems

The complete classification of ambivalent pairs (σ, ρ) remains the first and main
open problem. We believe that it is an interesting combinatorial problem by
itself, and that it deserves attention. Perhaps it is impossible to formulate simple
necessary and sufficient conditions for the general problem, but it would be
interesting to obtain a complete solution at least for some special cases. For
example for two-element sets σ = {p1, p2} (it seems that cardinality of σ is more
important).

A related complexity question is if the ambivalence of (σ, ρ) can be tested in
polynomial time.

Another interesting question is a fixed parameter tractability of the ∃(σ, ρ)-
domination. If the maximal value of σ is supposed to be the parameter, then
the Theorem 3 shows that this problem is in FPT for |σ| = 1 and p + 2 ≤ qmin
(in fact our algorithm is polynomial in p and n). On the other hand, our general
algorithm from Subsection 3.1 has the parameter pmax in the exponent of the
running time, and hence is not FPT-algorithm. Fixed parameter tractability
(or intractability) of the general case remains an open problem. Also it would
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be interesting to consider the problem parametrized by the size of the (σ, ρ)-
dominating set.
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10. Hell, P., Nešetřil, J.: On the complexity of H-colouring. Journal of Combinatorial
Theory B 48, 92–110 (1990)

11. Kratochv́ıl, J., Manuel, P., Miller, M.: Generalized domination in chordal graphs.
Nordic Journal of Computing 2, 41–50 (1995)

12. Proskurowski, A., Telle, J.A.: Algorithms for vertex partitioning problems on par-
tial k-trees. SIAM J. Discrete Math. 10, 529–550 (1997)

13. Schaefer, T.J.: The complexity of the satisfability problem. In: Proceedings of the
10th Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM Press,
New York (1978)

14. Telle, J.A.: Complexity of domination-type problems in graphs. Nordic Journal of
Computing 1, 157–171 (1994)

15. Telle, J.A.: Vertex partitioning problems: characterization, complexity and algo-
rithms on partial k-trees, PhD thesis, Department of Computer Science, Universiy
of Oregon, Eugene (1994)



Recognizing Bipartite Tolerance Graphs in

Linear Time

Arthur H. Busch1,� and Garth Isaak2

1 Unviersity of Dayton, Dayton OH 45419-2316
art.busch@notes.udayton.edu

2 Lehigh University, Bethlehem PA 18015
gi02@lehigh.edu

Abstract. A graph G = (V, E) is a tolerance graph if each vertex
v ∈ V can be associated with an interval of the real line Iv and a
positive real number tv in such a way that (uv) ∈ E if and only if
|Iv ∩ Iu| ≥ min(tv, tu). No algorithm for recognizing tolerance graphs in
general is known. In this paper we present an O(n + m) algorithm for
recognizing tolerance graphs that are also bipartite, where n and m are
the number vertices and edges of the graph, respectively. We also give a
new structural characterization of these graphs based on the algorithm.

1 Introduction and Notation

A graph G = (V, E) consists of a set V , called vertices and a collection E of
edges, which are unordered pairs of elements of V . We assume throughout this
paper that our graphs are simple and finite. In other words, |V | is always finite,
and E is a set which contains no edge of the form (vv). The order of G is |V |
and we will denote this throughout the paper as n. Similarly, the size of G is
|E| which we will denote by m. A graph is a tree if is connected and contains
no cycles, and a tree in which there is at most one vertex incident with multiple
edges will be called a star. A graph is bipartite when the vertex set can be
partitioned into two sets so that no edge connects two vertices from the same
set. When G is a bipartite graph, we will represent a bipartition of V as Vx

and Vy, with nx = |Vx| and ny = |Vy |. For the bipartite graph G = (Vx, Vy, E)
with Vx = {x1, . . . xnx} and Vy = {y1, . . . , yny}, we will use A(G) to denote
the reduced adjacency matrix of G. This is the nx × ny matrix with aij = 1 if
(xiyj) ∈ E and aij = 0 otherwise.

We will call a collection of sets U consecutively orderable if the sets can be in-
dexed U1, U2, . . . Uk so that whenever x ∈ Ui∩Uk then x ∈ Uj for every i ≤ j ≤ k.
A collection of sets together with such an ordering will be referred to as consec-
utively ordered. In this paper, the collections of sets will generally be subsets of
the vertex set of a graph and in order to conserve notation we will say that a
set of subgraphs G1, . . . Gk is consecutively ordered when V (G1), . . . , V (Gk) is
consecutively ordered.
� Research for this article was performed while the author was a Visiting Assistant

Professor at Lehigh University.
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1.1 Tolerance Graphs

Tolerance graphs were introduced in 1982 by Golumbic and Monma [8] to model
certain scheduling problems. A graph G = (V, E) is a tolerance graph if each
vertex v ∈ V can be associated with an interval of the real line Iv and a positive
real number tv in such a way that (uv) ∈ E if and only if |Iv ∩ Iu| ≥ min(tv, tu).
The collection 〈I, t〉 of intervals and tolerances is called a tolerance representation
of the graph G. A tolerance representation is called bounded when |Iv| ≤ tv for
every v ∈ V , and when G has such a bounded tolerance representation, we will
say that G is a bounded tolerance graph.

Note that some authors (see [3], [7] and [18]) have studied a class of graphs
that they call “bipartite tolerance graphs” but which is properly contained in the
intersection of the classes of tolerance graphs and bipartite graphs (the graph T2
in Fig. 1 is a separating example, as it is both bipartite and a tolerance graph,
but is not a “bipartite tolerance graph” as defined in [7]). This smaller class of
graphs was shown to be equivalent to bipartite permutation graphs in [3] and
[18], and it follows from a theorem of Langley [12] that the class of bipartite
permutation graphs is equivalent to bipartite bounded tolerance graphs. As a
result, we will follow the convention used in [10], and we will use the phrase
bipartite tolerance graph for the intersection of tolerance graphs and bipartite
graphs, and the phrase bipartite bounded tolerance graph for the smaller class
that is equivalent to bipartite permutation graphs.

Additional background and results on tolerance graphs can be found in the
recent book by Golumbic and Trenk [10]. Although tolerance graphs and related
topics have been studied extensively, the problem of characterizing tolerance
graphs remains open, as does tolerance graph recognition [10]. It was shown in
[11] that every tolerance graph has a polynomial sized tolerance representation,
and hence Tolerance Graphs recognition is in the class NP. However, this result
gives no information on how to construct an algorithm that recognizes when a
graph has a tolerance representation.

The class of cycle free tolerance graphs was characterized in [9].

Theorem 1 (Golumbic, Monma and Trotter, [9]). Let T be a tree. Then
T is a tolerance graph if and only if T contains no induced subgraph isomorphic
to T3, in Fig. 1.

For bipartite graphs which contain cycles, Busch [5] gave the following charac-
terization.

Theorem 2 (Busch [5]). A bipartite graph G is a tolerance graph if and only
if there exists a set of consecutively ordered stars S1, S2, . . . , St which partition
the edges of G.

T2 T3

Fig. 1. The trees T2 and T3
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1.2 Asteroidal Triples and Consecutive Orderings

A (0, 1)-matrix M has the consecutive 1’s property for rows if the columns of
M can be permuted in such a way that the 1’s in every row occur consecu-
tively. Analogously, a matrix M has the consecutive 1’s property for columns
if the rows of M can be permuted in such a way that the 1’s in every column
occur consecutively. Tucker [20] investigated when the reduced adjacency ma-
trix A(G) of a bipartite graph G = (Vx, Vy, E) has the consecutive 1’s property
for rows or columns. A consecutive ordering of the columns or rows of A(G)
represents an ordering of either Vx or Vy such that the collection of neighbor-
hoods Nx = N(x1), N(x2), . . . , N(xnx) or Ny = N(y1), N(y2), . . . , N(yny) is
consecutively ordered. Tucker calls bipartite graphs where Nx is consecutive or-
derable X-consecutive, and analogously, a bipartite graph is Y-consecutive when
Ny is consecutive orderable. Bipartite graphs which are either X-consecutive
or Y -consecutive are known as convex, while bipartite graphs that are both X-
consecutive and Y -consecutive are biconvex.

An asteroidal triple in a graph G = (V, E) is a triple of distinct vertices
v0, v1, v2 with the property that for each i = 0, 1, 2, there is a path from vi+1
to vi+2 in G that contains no vertex adjacent to vi (subscript addition is per-
formed modulo 3). Tucker showed the following connection between consecutive
orderings and asteroidal triples.

Theorem 3 (Tucker [20]). A bipartite graph G = (Vx, Vy, E) is X- consecutive
if and only if G has no asteroidal triple contained in Vx. Similarly G is Y -
consecutive if and only if G has no asteroidal triple contained in Vy.

Algorithms which determine if a matrix has the consecutive 1’s property for rows
form the basis for the first linear recognition algorithm for interval graphs, due
to Booth and Lueker [1], and closely related algorithms also recognize convex
graphs in linear time (although such algorithms generally avoid using adjacency
matrices to preserve linear running times even for sparse graphs). Algorithms
to identify the consecutive 1’s property of a matrix can also easily be used to
determine when a collection of subgraphs G = G1 . . .Gt of a given graph G is
consecutively orderable. We simply construct the “vertex-graph incidence ma-
trix” Mn×t = [mij ] which has mij = 1 if the vertex vi is contained in V (Gj)
and mij = 0 otherwise. Then G is consecutively orderable if and only if M has
the consecutive 1’s property for rows. Thus, when G is part of the input, and
G is a collection of stars which partition the edges of G, a consecutive 1’s algo-
rithm can be used to show that G is a tolerance graph using Thm. 2. However,
a tolerance graph G generally has many star partitions (the set E, for example),
not all of which can be consecutively ordered. As a result, the above procedure
cannot be used to decide if an arbitrary bipartite graph is a tolerance graph.
In the following section, we investigate the structure of bipartite graphs whose
edges can be partitioned into sets which induce stars which are consecutively
orderable. We call such a partition a consecutive star partition (CSP), and in
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the process obtain both a conceptually simple linear time algorithm (O(n +m))
that recognizes the class of bipartite tolerance graphs, and a new characterization
of this class.

2 Bipartite Tolerance Graphs

We begin with some basic observations about consecutive star partitions and
tolerance graphs. Throughout this section we will denote a consecutive star par-
tition (CSP) of a graph G as S = S1, S2, . . . , St, where each Si is a star, and we
will call t the length of S. We will denote the vertex and edge set of the star
Sj as V (Sj) and E(Sj), respectively. If Si is a single edge, we will arbitrarily
designate one endpoint of this edge as ci. Otherwise, let ci be the unique central
vertex of Si.

Observation 4. Let G = (Vx, Vy, E) be a connected bipartite tolerance graph
with CSP S = S1, S2, . . . , St. Then V (Si) ∩ V (Si+1) is a cut-set of G for each
1 ≤ i < t.

Proof. Let L = V \
⋃i

j=1 V (Sj) and R = V \
⋃t

j=i+1 V (Sj). Since S partitions
E(G) and G is bipartite, both L and R are non-empty. Each edge incident with
a vertex of L is contained in a star Sj with j ≤ i, and any edge incident with a
vertex of R is contained in a star Sj with j ≥ i + 1. Thus, no edge connects L
and R and V − (L ∪ R) = V (Si) ∩ V (Si+1) is a cut-set.

Observation 5. Let G be a 2-connected bipartite graph. Then G is a tolerance
graph if and only if G is convex.

Proof. Assume G = (Vx, Vy, E) is a tolerance graph. Then G has a CSP S =
S1, S2, . . . , St, and since G is 2-connected, we must have |V (Si) ∩ V (Si+1)| ≥ 2
for i = 1, . . . , t−1. Without loss of generality, assume c1 ∈ Vx. If ci ∈ Vx for each
1 ≤ i ≤ t, then G is clearly X-consecutive. Otherwise, let i be the minimal index
such that ci ∈ Vy. It follows immediately that V (Si) ∩ V (Si−1) = {ci, ci−1} and
thus the edge (cici−1) is in both Si and Si−1, a contradiction.

For the converse, assume that Nx is consecutively ordered, and let Vx =
{x1, v2, . . . xnx} correspond to this ordering. Let Si be the subgraph of G induced
on N [xi] = N(xi) ∪ {xi} for 1 ≤ i ≤ t. Since G is bipartite, each induced
subgraph is a star, and because each xi is in a unique V (Si), the set of stars are
consecutively ordered and clearly partition the edges of G. Thus, G is a tolerance
graph by Thm. 2.

Observation 5, together with the hereditary property of bipartite tolerance
graphs, shows that every 2-connected subgraph of a bipartite tolerance graph
must be convex. Recall that a block of a graph G is a maximal subgraph of G
with no cut-vertex. It is easy to see that every block of a connected graph is
either 2-connected, a cut-edge or an isolated vertex (in the trivial case where
G = K1). We will define the boundary of a block B, denoted B(B) as the set
of vertices in B with N(v) 	⊆ V (B). In other words, the boundary of a block
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Fig. 2. The block structure of G − PG for a bipartite tolerance graph G. The dashed
ovals represent 2-connected blocks and the gray vertices are pendant in G.

B is the set of cut-vertices of G that are also vertices of B. If PG is the set
of pendant vertices of G, we will partition the boundary of B into two sets
B1(B) = {v ∈ B(B) | (N(v) \ B) ⊆ PG} and B2(B) = B(B) \ B1(B).

Let B be a block of a graph G. We will define B′ as the graph induced by
the vertices of B, together with the vertices in PG adjacent to B1(B). We then
define a graph HB from B′ by adding two new vertices v′ and v′′ to B′ for each
vertex v ∈ B2(B), along with the edges (vv′) and (v′v′′). Note that HB is an
induced subgraph of G, and that if B2(B) = ∅ then HB = B′ = G.

Our algorithm is based on the following results, the first of which is a slight
extension of Obs. 5.

Lemma 6. If G is a bipartite tolerance graph, then for every block B of G, HB

is convex.

Lemma 7. If G is a bipartite tolerance graph and B is a 2-connected block of G
with |B2(B)| ≥ 2, then B2(B) = {u, v} and B′ has a CSP with that begins with
a star containing u and ends at a star containing v.

Corollary 8. If G is a bipartite graph and B is a 2-connected block of G with
|B2(B)| > 2, then HB is not convex, and G is not a tolerance graph.

Lemma 9. If G is a bipartite tolerance graph, and B is a block of G with
B2(B) = {v} and v is at distance two or less from every other vertex of B′,
then B′ has a CSP such that v is contained in every star.

In broad terms, for a bipartite tolerance graph G, the above results impose a
structure on the blocks of G − PG, as well as a structure on the arrangement
of those blocks. We illustrate this informally in Figure 2. After removing the
pendant vertices, Cor. 8 and Lem. 9 imply that the cut-vertices of G − PG can
be arranged linearly.

3 Recognizing Bipartite Tolerance Graphs

We now present an algorithm based on the results from the previous section that
recognizes bipartite tolerance graphs.
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Algorithm 1. Determine if G is a bipartite tolerance graph
Require: G is a connected, bipartite graph
1: Find PG, the blocks of G − PG, and the block-cutpoint graph T of G − PG.
2: for all blocks B of G − PG do
3: Construct B and HB

4: if HB is not convex then
5: return false
6: else
7: if dT (B) = 1 and B (c) ? 2 for the unique cut-vertex c ? B then
8: Delete B from T
9: end if

10: end if
11: end for
12: if T is a path then
13: return true
14: else
15: return false
16: end if

Theorem 10. Algorithm 1 is correct, and runs in O(n + m) steps.

Proof. First, we show that the algorithm is correct. If G − PG contains a block
B such HB is not convex, then G is not a tolerance graph by Lem. 6. If HB is
convex for every block B, but T is not a path after all applicable blocks have
been deleted, then T contains a vertex of degree three or more. This vertex does
not represent a block of G − PG, since for such a block B, |B2(B)| ≥ 3 which
implies that HB is not convex by Lem. 8. So this vertex in T represents a cut-
vertex v, and because none of the blocks adjacent to v were deleted, v is at the
end of at least three paths of length three or more. Furthermore, the edges of
these paths incident with v are each in different blocks of G, and as a result G
contains an induced subgraph isomorphic to T3, and hence is not a tolerance
graph by Thm. 1. In all other cases, the algorithm returns true. In such cases,
either G is a star and hence obviously a tolerance graph, or we can construct a
CSP for G as follows:

Since each block of T has a corresponding HB that is convex, each HB is
clearly also a tolerance graph. Thus, for each block that is adjacent to two cut-
vertices u and v on this path, the associated graph B′ has a CSP that begins
at a star containing u and ends at a star containing v by Lem. 7 as applied to
HB. For any blocks B on the ends of this path adjacent to only one cut vertex
v, the same argument used in the proof of Lem. 7 guarantees that B′ will have
a CSP that begins or ends at a star containing v. Thus, we can easily combine
each of these CSPs into a CSP that contains every edge in an undeleted block.
Finally, each pendant edge of G that is not in any B′ and each block B that
was deleted from T is adjacent to a single cut-vertex v and has a CSP with v
contained in every star (trivially, in the case of a pendant edge, or by Lem. 9
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as applied to HB). Thus we can insert this CSP into our combined CSP at the
beginning (or end) if the first (or last) star already contains v, or between any
two stars that both contain v. Two such stars must exist if the first and last star
do not already contain v, since in this case v must be contained in two blocks
that were not deleted from T . Because every edge of G is in at least one graph
B′, this covers the edges of G. Further, any edge in more than one B′ must be
pendant, and by deleting these duplicates we obtain a CSP for G. Therefore, G
is a tolerance graph by Thm. 2.

It now remains to show that the algorithm requires O(n + m) steps. Finding
the set PG requires O(n) time, and finding the blocks and cut-vertices of G−PG

and building the block-cutpoint graph T can be done in O(n + m) time [19].
Using these blocks, we can also construct each graph B′ and the associated graph
HB in O(nb) time, and verifying that each HB is convex requires O(nb + mb)
time, where nb and mb are the order and size of B′, respectively. Determining if
dT (B) = 1, and if so, identifying the cut vertex c adjacent to B in T can be done
in constant time, and because B is bipartite we can determine if B′ contains an
induced path of length three or more that begins at v in O(nb) time. Thus, the
total running time for all of these tests is

∑

B′

O(nb + mb).

After all these tests are complete and the blocks satisfying the condition in
line 8 have been deleted from T , testing that the graph remaining is a path
requires O(|V (T )|) = O(n + m) steps.

Each edge is in at most one B′, and an easy induction proof shows that
∑

V (G) bv ≤ 2n, where bv is the number of blocks which contain the vertex v.
Hence the total running time of the algorithm is

∑

B′

O(nb + mb) = O(
∑

B′

nb + mb) = O(m +
∑

V (G)

bv) = O(m + n)

as desired.

Note that this algorithm also gives a new structural characterization of bipar-
tite tolerance graphs, which we give in the following theorem:

Theorem 11. Let G be a connected bipartite graph. Then G is a tolerance graph
if and only if, for every block B of G, HB is convex, and G contains no induced
subgraph isomorphic to the graph T3 in Figure 1.

As indicated in the proof of Theorem 10, Algorithm 1 can easily be modified to
provide a CSP of G when G is a bipartite tolerance graph. This CSP can then
be combined with the algorithm in [5], to give a tolerance representation of the
graph G. Although this representation is not guaranteed to be polynomial in the
size of G, such a polynomial sized representation is guaranteed by the result in
[11]. Since the algorithm in [5] is clearly not optimal, it seems likely that there is
an efficient algorithm that will convert the CSP into a polynomial sized tolerance
representation of G, which could then be used to certify the correctness of the
algorithm.
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When Algorithm 1 returns false, we can also certify this result, either by
identifying an induced subgraph of G isomorphic to T3, or by giving an induced
subgraph HB of G that is not convex. Although we do not have complete list of
such obstructions, we can identify an asteroidal triple of HB that is contained
in Vx and an asteroidal triple of HB contained in Vy . This certifies that HB is
not convex, and hence that G is not a tolerance graph by the contrapositive of
Lem. 6.

4 Class Hierarchies

In conclusion, we consider how various sub-classes of chordal bipartite graphs
relate to the class of bipartite tolerance graphs and the potential extensions of
our algorithm to related classes. We begin by noting some basic inclusions from
[3]. Recall that the class of bipartite permutation graphs is equivalent to the
class which we denote as bipartite bounded tolerance graphs.

permutation ∩ bipartite ⊂ biconvex ⊂ convex ⊂ chordal bipartite

Next, we note a refinement of the above hierarchy due to a combination of the
results of Brown [4], Busch [5], Müller [14], and Sheng [16].

convex ⊂ probe int. ∩ bip. ⊂ tolerance ∩ bip. ⊂ int. bigraph ⊂ chordal bip.

Both convex and biconvex graphs can be recognized in linear time [2]. and
chordal bipartite graphs may be recognized in O(min{m log(n), n2}) time
[13,15,17]. The best known algorithms for the class of bipartite probe-interval
graphs and for the class of interval bigraphs are polynomial [6,14]. In the case
of 2-connected bipartite graphs, Obs. 5 shows that convex = tolerance ∩ bi-
partite, and it is this equivalence that forms the basis of the algorithm in the
previous section. Furthermore, it is easy to show that within the subclass of
2-edge-connected bipartite graphs, convex = probe-interval ∩ bipartite. This
equivalence suggests a similar approach to the one used above may provide a
linear time algorithm for the class of bipartite probe-interval graphs. It is less
certain that our approach can be extended to give a linear time recognition al-
gorithm for the class of interval bigraphs or the class of chordal bipartite graphs.
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Abstract. We define helicopter cop and robber games with multiple
robbers, extending previous research, which only considered the pursuit
of a single robber. Our model is defined for robbers that are visible (the
cops know their position) and active (able to move at every turn) but
is easily adapted to other common variants of the game. The game with
many robbers is non-monotone: more cops are needed if their moves
are restricted so as to monotonically decrease the space available to the
robbers. Because the cops may decide their moves based on the robbers’
current position, strategies in the game are interactive but the game
becomes, in a sense, less interactive as the initial number of robbers
increases. We prove that the main parameter emerging from the game
captures a hierarchy of parameters between proper pathwidth and proper
treewidth. We give a complete characterization of the parameter for trees
and an upper bound for general graphs.

1 Introduction

During recent decades, the problem of searching a graph has attracted much
attention, because of its purely graph-theoretic interest and its numerous ap-
plications in modelling problems in communication networks. In general, graph
searching problems are modelled as a game played between a team of cops and
a robber, whom the cops attempt to capture by moving systematically through
the graph. We wish to know the minimum number of cops required to catch
the robber, under various constraints on the players’ behaviour. Several versions
have been examined varying, for example, in whether the cops know the robber’s
position, whether the robber can move at will or only when disturbed by a cop,
and how the cops move through the graph.

One of the main models of graph searching, the helicopter cops and robber
game, was introduced by Seymour and Thomas [8]. In this model, the robber
occupies a vertex of a graph and is active, in the sense that he may move at
any round of the game, along any path whose vertices are not guarded by cops.
The cops do not have to stay within the graph and can be placed on or removed
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from its vertices, as if flying by helicopter. The cops win when a cop lands on
the vertex occupied by the robber and he cannot escape.

Critically, the robber is visible: the cops know his current position at all times
and can use this information to decide their moves, so the strategy they use is
interactive. The least number of cops guaranteed to be able to catch the robber
in a graph, regardless of how the robber attempts to escape, is one greater than
the graph’s treewidth [8]. The proof of this is based on a proof of the game’s
monotonicity; i.e., the fact that the cops do not become weaker when their
moves are restricted to those that monotonically decrease the space available to
the robber.

In an important variant of the game, the robber is a lazy fugitive who may
move only when a cop moves to his vertex. To compensate, the robber is invisible:
the cops do not know his position. Strategies are no longer interactive but may be
given in advance as a predetermined sequence of moves. This version of the game
is equivalent to the Seymour–Thomas game in the sense that, for any graph, the
two games require the same number of cops [3]. It follows easily from [3] (see
also [1]) that the number of cops required to ensure the capture of an active,
invisible robber is one greater than the pathwidth of the graph, another graph
parameter of equal importance to treewidth.

We examine and unify the above models under the natural extension where
the graph contains many robbers rather than just one. This is the first time
that multiple robbers have been considered and we believe that our results will
motivate a corresponding study for other searching models as well.

We describe our graph searching model using the most general setting of
mixed search, proposed by Bienstock and Seymour [1] (see also [9,10,11,12]). In
this model, as well as being placed on or removed from the graph, the cops can
slide along its edges. This may reduce by one the number of cops required to
search a graph but the version without sliding can be reduced to mixed search by
replacing each edge in the graph with two parallel edges or a triangle including
a new vertex [1]. As well as being more general, using mixed search makes the
presentation of our results cleaner.

It is not obvious how to generalize the concept of monotonicity for the setting
with many robbers. Each robber has his own individual free space, so it is not
clear whether monotonicity should be defined individually or collectively. We
give three natural definitions (individual and collective, and a definition based
on the cops’ behaviour) and show them to be equivalent.

Monotonicity is crucial in the multiple-robber case. If we do not require
monotonicity, we can catch r visible, active robbers one at a time by repeat-
ing the strategy to catch a single robber, without requiring a greater number
of cops. However, when we restrict to monotone strategies, the number of cops
required, which we denote mvams(G, r) (for monotone, visible, active mixed
search number against r robbers), can be greater and depends on the number
of robbers. In particular, mvams(G, 1), the mixed search number for a single
visible, active robber, is equal to the parameter of proper treewidth [2,9]. On the
other hand, if n is the order of G, then mvams(G, n) is equal to the mixed search



Graph Searching in a Crime Wave 23

number for a single invisible, active robber, which is equal to the parameter of
proper pathwidth [11]. We show that mvams(G, r) can, for appropriate values of
r, take all values between proper treewidth and proper pathwidth. As our main
result, we give the exact value of our parameter on trees T and an upper bound
for general graphs G:

mvams(T, r) = min {ppw(T ), �log r� + 1}
mvams(G, r) ≤ min {ppw(G),ptw(G) · (�log r� + 1)} .

Our result for trees extends the analogous characterizations for pathwidth and
proper pathwidth given in [10] and [4], respectively. Our results can be seen as
showing that the number of robbers tunes the amount of interactivity in search
strategies, spanning all intermediate levels from pathwidth (fully predetermined)
to treewidth (fully interactive). Another way of defining this tuning was given by
Fomin, Fraigniaud and Nisse, who considered a single active robber but restricted
the number of rounds at which the cops can ask for the robber’s position [5].

The remainder of the present paper is organized as follows. Our searching
model is defined in Section 2. In Section 3, we show the equivalence of three
reasonable definitions of monotonicity and explore the rôle of monotonicity in
the game. To relate our hierarchy of parameters to the proper pathwidth and
proper treewidth, we briefly consider games with a single invisible robber in
Section 4. Our complete characterization of mvams(T, r) for trees T follows
in Section 5, where we also give an upper bound for general graphs. Several
consequences of our results and open problems are presented in Section 6.

2 The Searching Model

All graphs in this paper are finite, simple and undirected.
In a helicopter search game with many visible robbers, the opponents are a

group of cops and a group of robbers, who each occupy vertices of the graph.
The cops and robbers have full information about each other’s location and may
use this information to decide their moves. The goal of the cops is to capture the
robbers. Initially, there are no cops in the graph but, at all times, any robber
who has not been captured is on some vertex. A play of the game consists of a
sequence of rounds, with each round being composed of three parts, as follows.

Announcement. The cops announce their intended move to the robbers. One
cop moves in each round, by one of the following operations.
– Placing a cop on a vertex v, not currently occupied by a cop, denoted

by place(v).
– Removing a cop from an occupied vertex v, denoted by remove(v).
– Sliding a cop who is on one endpoint u of an edge {u, v} to the other,

which is initially unoccupied, denoted by slide(u → v).
Avoidance. Each of the robbers can move to any vertex reachable from his

current position by a path not blocked by cops, as long as this vertex will
not be occupied by a cop once the cops’ current move has been realized. If
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the announced move is a placement to or removal from some vertex, that
vertex is not considered blocked for the purposes of the robbers’ movement
in the round; if it is slide(u → v), the edge {u, v} is considered to be blocked
for this round but the vertices u and v are not.

Realization. The cops carry out the announced action.

A robber is captured if the cops announce that they will move (by placement
or sliding) to his vertex and he cannot move away.

To formalize the game, we use a string R ∈ (V (G) ∪ {∗})r to denote the
positions of the r robbers in the graph. The ith character of R is either the
vertex occupied by the ith robber or is “∗”, when the ith robber has been
captured. We write V (R) for the set of characters of R except ∗. Since, at any
time, there is at most one cop on any vertex, we may represent the position of
the cops as a set S ∈ V (G)[≤k] (i.e., S ⊆ V (G) and |S| ≤ k).

A play of the game on a graph is an infinite sequence of positions P =
S0,R0, S1,R1, . . . , where, for each i, the transition from having the cops at
Si and robbers at Ri to the cops at Si+1 and robbers at Ri+1 is a valid move of
the game. Specifically,

– S0 = ∅;
– S1 = {v} for some vertex v — the first move is place(v); and
– if Si, Si+1 are consecutive sets, then one of the following holds:

• Si+1 − Si = {v} — the move is place(v),
• Si − Si+1 = {v} — the move is remove(v),
• Si+1 � Si = {u, v} ∈ E(G) — the move is slide(u → v) where Si −

Si+1 = {u} and Si+1 − Si = {v}.

We call such a sequence of cop positions consistent. Given two consecutive
sets Si and Si+1 of a consistent sequence, say that a path P of G is (Si, Si+1)-
avoiding if its internal vertices avoid Si ∩ Si+1 and its edges avoid the edge
e = Si+1 � Si, in the case that |e| = 2. If the location of the robbers at the i-th
step is Ri = [a1 . . . ar], the set of free locations for the jth robber after step i is
F j

i+1 = ∅ if aj = ∗ and, otherwise,

F j
i+1 =

{

y ∈ V (G) − Si+1 | G has an (Si, Si+1)-avoiding (aj , y)-path
}

.

As a response to the ith move of the cops, the robbers can choose their new
location to be any string Ri+1 = [a′

1 . . . a′
r] such that for j ∈ {1, . . . , r}, a′

j = ∗
if F j

i+1 = ∅ and a′
j ∈ F j

i+1, otherwise. (Note, in particular, that, if aj = ∗, then
F j

i+1 = ∅, so a′
j = ∗, also. Thus, a robber who has been captured can never

return to the game.)
We set F0 = V (G), and for i ≥ 1, we define Fi =

⋃

j∈{1,...,r} F j
i . We say that

the sequence F0, F1, . . . is the sequence of free positions for the robbers. If, for
every i ≥ 0, Fi+1 ⊆ Fi we say that P is a monotone play.

A play P = S0,R0, S1,R1, . . . is winning (for the cops) if V (Ri) = ∅ for some
i ≥ 0: that is, all the robbers are eventually captured. The essential part of a
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winning play is the subsequence S0,R0, . . . , S�,R�, where � is minimal such that
V (R�) = ∅.

According to our description of the game, each move of the cops may depend
on the current position of the cops and robbers in the graph. A (k, r)-strategy is
a function1

μ : V (G)[≤k] × (V (G) ∪ {∗})r → V (G)[≤k],

whose inputs are the position S of the cops and the positions R of the robbers
and whose output is S′, the new position of the cops, with the requirement that,
for all S and R, the sets S and S′ = μ(S,R) obey the restrictions given in the
definition of consistency for sequences. That is, there is a single move which
transforms the cop position S to S′.

Given a strategy μ, a μ-play, is any play S0,R0, S1,R1, . . . where Si+1 =
μ(Si,Ri) for all i ≥ 0. A strategy μ is monotone (respectively, winning) if all
μ-plays are.

We define the non-monotone and monotone, visible, active mixed search num-
ber, respectively, of a graph G as follows:

vams(G, r) = min
{

k | G has a winning (k, r)-strategy
}

mvams(G, r) = min
{

k | G has a monotone winning (k, r)-strategy
}

.

It is equivalent, and usually easier, to describe a search strategy as a search
program Π , that makes move decisions depending only on the current position
of the cops and robbers. The program receives the positions of the robbers by
calling a routine robbers positions().

As an example, Program 1, defines a monotone winning search program for
one cop against one robber in a tree T . At each step, the robber must choose
his position in the component T ′ where he resides, excluding the vertex w that
is the target of the cop’s move. Thus, the robber’s set of free positions becomes
strictly smaller, so the strategy is both winning and monotone.

In this program, the cops only care about the component that contains the
robber and not about which vertex he occupies within that component. With an
eye to the situation with more than one robber, we can say that the move of the
cops from position S depends only on the number of robbers in each component
of T −S. The cops do not lose any power if their information is restricted in this
way. Say that a (k, r)-strategy for a graph G is smooth if, for all S ∈ V (G)[≤k]

and R,R′ ∈ (V (G) ∪ {∗})r, such that each component of G − S contains the
same number of robbers in R1 as in R2, we have μ(S,R1) = μ(S,R2).

1 When we define strategies, we will not define the action of the cops in positions that
can never occur when the strategy is executed. Thus, we give only a partial func-
tion. Formally, the strategy is any total extension of this partial function, assigning
arbitrary moves to the cops in situations that can never happen. Further, it can be
shown that more general notions of strategy, allowing the cops to decide their move
depending on previous positions in the game, as well as the current position, do not
increase the cops’ power.
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Search Program 1. Π(T, 1) to capture one robber in a tree T .

place(v) where v is any vertex of T .
Let R ← robbers positions().
Let T ′ ← T .
While V (R) �= ∅,

Let T ′ be the connected component of T − v containing V (R)
and let w be the (unique) vertex of T ′ adjacent to v.

slide(v → w).
Let v ← w.
Let R ← robbers positions().

remove(v).

Lemma 1. There is a winning (k, r)-strategy in G if, and only if, there is a
smooth winning (k, r)-strategy in G.

Using smoothness, the proof of the following important is straightforward. We
write G � H to indicate that G is a minor of H (i.e., that G can be obtained
from a subgraph of H by a sequence of edge contractions).

Proposition 2. If G � H and r ≥ 1, then mvams(G, r) ≤ mvams(H, r).

3 Variants of Monotonicity

We have defined monotonicity for plays and strategies. These definitions are
natural extensions of the single-robber case but not the only ones. We now
consider two other natural definitions, which turn out to be equivalent to the
first, and begin an investigation of the cost of monotonicity.

Let P = S0,R0, S1,R1, . . . be a μ-play. P is pointwise monotone if, for
each j ∈ {1, . . . , r} and each i ≥ 0, F j

i+1 ⊆ F j
i ; i.e., no robber’s set of free

positions ever increases. P is cop monotone if, for each v ∈ V (G), the set
{i | v ∈ Si and V (Ri) = ∅} is an interval of N: once the cops have left a vertex,
they never return to it while there are robbers in the graph. Any cop-monotone
μ-play must be winning because the cops must revisit a vertex if a robber lives
forever. A strategy is monotone according one of the above definitions if all its
plays are.

Lemma 3. For any graph G and k, r ≥ 1, the following are equivalent:

1. there is a monotone winning (k, r)-strategy in G;
2. there is a pointwise-monotone winning (k, r)-strategy in G;
3. there is a cop-monotone (k, r)-strategy in G.

Proof (sketch). (2)⇒(1) trivially. The main idea for (1)⇒(3) is that any vertex
that is revisited cannot be in the free space of the robbers so, with some work
and assuming smoothness (using Lemma 1), the strategy can be modified to
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omit the revisit. For (3)⇒(2), if some robber’s free space increases, a cop must
have left some vertex on its boundary and the robbers can force the cops to
revisit that vertex. ��

The natural definitions of monotonicity are equivalent but is monotonicity im-
portant? If there are r robbers in a tree T , we can modify Program 1 to let T ′

be the component containing the ith robber, where i is minimal among those
robbers who have not yet been caught. This program catches the first robber
(and any other robbers foolish enough to follow him), then the second, and so
on. It is not monotone for more than one robber but wins against any number
of robbers, still with only one cop.

The same technique can be applied to transform any search program for one
robber (on an arbitrary collection of graphs), into a non-monotone program
for any number of robbers. On the other hand, it is clear that monotonically
searching for r > 1 robbers requires at least as many cops as does monotonically
searching for a single robber. We summarize these observations in the following
lemma.

Lemma 4. For any graph G and any r ≥ 1,

vams(G, r) = vams(G, 1)
mvams(G, r) ≥ mvams(G, 1) .

Thus, allowing non-monotone strategies may make it easier to search for many
robbers. This raises the question of what is the cost of requiring monotonic-
ity when facing a crime wave. Given a graph G and r ≥ 1, what is the ratio
mvams(G, r)/mvams(G, 1)? In Section 5, we give a full answer for trees and
an upper bound for general graphs. We postpone this until we have established
some necessary results in the next section.

4 Invisible Robbers

In this section, we give brief descriptions of two game variants where the single
robber is invisible and the cops must, therefore, determine their moves without
reference to the robbers’ position. In one of the variants we consider, the robber
is active (that is, he can move at every round); in the other, he is lazy (he can
move only when a cop moves onto his vertex).

In both cases, as the robber is now invisible, the game is no longer interactive
and the cops’ moves may be given in advance as a predetermined strategy. Thus,
we define a k-strategy for k cops to be any consistent sequence S = S0, S1, . . . of
sets in V (G)[≤k].

Given such a strategy, the free space for an invisible, active robber is the
sequence given by F0 = ∅ and

Fi+1 = {y ∈ V (G) − Si+1 | there is an (Si, Si+1)-avoiding
x–y path for some x ∈ Fi} .
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A strategy S is monotone if Fi+1 ⊆ Fi for all i ≥ 0 and is winning if Fi = ∅
for some i ≥ 1. Because the game is not interactive, plays do not feature in our
analysis so we do not define them.

The non-monotone and monotone, invisible, active mixed search numbers are,
respectively,

iams(G) = min {k | there is a winning k-strategy for G}
miams(G) = min {k | there is monotone winning k-strategy for G} .

It is known that iams(G) = miams(G) [1]. It is not hard to see that searching
for an invisible, active robber in a n-vertex graph G is equivalent to searching for
n visible, active robbers. Informally, an invisible robber could be on any vertex
in the free space but with n robbers, we may assume that there really is at least
one robber on each vertex of the free space.

Lemma 5. For any graph G of order n, miams(G) = mvams(G, n).

The case of an invisible, lazy robber is similar to the active case but with the
difference that now, the robber moves only when a cop lands on his vertex.
Define free space, k-strategies, monotonicity and winning against a lazy, invisible
robber identically to the active case and write milms(G) and ilms(G) for the
corresponding monotone and non-monotone, invisible, lazy mixed search number,
respectively.

Lemma 6. For any graph G, milms(G) = mvams(G, 1).

Proof (sketch). Given a monotone, winning (k, 1)-strategy μ for G, any con-
catenation of the essential parts of all possible μ-plays is a monotone winning
k-strategy against an invisible, lazy robber.

For the converse, given a k-strategy S = S0, S1, . . . , Sn against an invisible,
lazy robber in G, the monotone, winning search program first makes the place-
ment to the vertex in S1. At each subsequent move, it removes a cop that is not
on the boundary of the robber’s free space, if any such cop exists; if not, it plays
the first move of S that moves a cop (by placement or sliding) into the robber’s
free space. It can be shown that this is always possible and that the resulting
strategy is both monotone and winning. ��

Define the proper pathwidth ppw(G) of a graph G to be the least k for which G �
Kk ×P for some path P , where Kk ×P is the graph formed from P by replacing
the vertices with disjoint copies of Kk and adding a matching between each
pair of cliques corresponding to adjacent vertices. Similarly, define the proper
treewidth ptw(G) of a graph G to be the least k for which G � Kk ×T for some
tree T . It is known that miams(G) = ppw(G) and milms(G) = ptw(G) (see,
e.g., [6, 9]). The following is straightforward.

Corollary 7. For any graph G and r ≥ 1, ptw(G) ≤ mvams(G, r) ≤ ppw(G).

We will not formally consider multiple invisible robbers. For lazy robbers, we
can consider either that all robbers may move whenever any robber is disturbed
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Search Program 2. Π(T, v, r) to monotonically capture r robbers in a tree T .

place(v).
Let R ← robbers positions().
While V (R) �= ∅,

Let T1, . . . , T� be the connected components of T − v
containing at least one and at most � r

2 � robbers.
For i ∈ {1, . . . , �},

Choose any vertex vi ∈ V (Ti).
Let ri be the number of robbers in Ti.
Call Π(Ti, vi, ri).

Let R ← robbers positions().
if V (R) ∩ V (T ) �= ∅ (i.e., robbers remain in T ), then

Let T ′ be the unique connected component of T − v where V (R) ⊆ V (T ′)
and let w be the vertex of T ′ adjacent to v in T .

slide(v → w).
Let v ← w and let T ← T ′.

remove(w).

or that just the disturbed robbers may move. In both of these cases and the
case for multiple active, invisible robbers, the search number for any graph G is
either ppw(G) or ptw(G), depending only on the number of robbers. Thus, the
classical equivalence of one lazy, invisible robber with one active, visible robber
fails to hold when we move to multiple robbers. This is not the first case where
the equivalence does not hold: it also fails for directed graphs, even with just
one robber [7].

5 Catching Multiple Robbers

We now present our exact characterization of the number of cops required to
monotonically catch r robbers in a tree T . Recall that a single cop suffices for
one robber.

Lemma 8. For any tree T and any r ≥ 1,

mvams(T, r) ≤ min {ppw(G), �log r� + 1} .

Proof (sketch). The fact that mvams(T, r) ≤ ppw(G) follows from Corollary 7.
To prove that mvams(T, r) ≤ �log r� + 1, let Π(T, r) be the search program
that calls Program 2 with v assigned to be any vertex of T . It can be shown that
Π(T, r) is winning, monotone and uses at most �log r� + 1 cops. ��

A 3-star composition of disjoint, connected graphs G1, G2 and G3 is any graph
Y(G1, G2, G3) formed by adding a new vertex v to G1 ∪G2 ∪G3 and adding one
edge from v to each of the three component graphs. The following lemma is the
key technical result in this section and allows us to quickly deduce lower bounds
for the search numbers of trees.
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Lemma 9. Let G = Y(G1, G2, G3), where mvams(Gi, � r
2�) ≥ k for each i ∈

{1, 2, 3}. Then, mvams(G, r) > k.

Proof (sketch). Suppose, towards a contradiction, that μ is a smooth, monotone,
winning (k, r)-strategy for G. By smoothness, there is some vertex v such that
the cops’ first move is place(v), for any initial position of the robbers. We may
assume, without loss of generality, that v /∈ V (G1)∪V (G2) and that � r

2� robbers
go to G1 and � r

2� to G2.
μ can be shown to induce a “nondeterministic strategy” (in which the cops

may have more than one move in some positions) on G1. By the inductive hy-
pothesis, this requires at least k cops. Thus, on G1, the robbers can always force
k cops to be in the graph. We can also define a nondeterministic strategy μ2 for
G2 such that every μ-play P corresponds to an interleaving of a μ1-play P1, a
μ2-play P2 and moves outside G1 and G2.

For i ∈ {1, 2}, Pi may be assumed to have k cops in Gi at some point.
Assuming, without loss of generality, that the robbers are cleared from G1 before
G2, there is a point when all k cops are in G1 so, in particular, there is no longer
a cop on v. But this contradicts monotonicity because there are still robbers in
G2 and these robbers can now reach v, which they could not reach before. ��

Corollary 10. For any tree T , and any r ≥ 1,

mvams(T, r) ≥ min {ppw(T ), �log r� + 1} .

Proof. Induction on q = �log r� + 1. For the base case, q = 1, Program 1 shows
that mvams(T, r) = 1 = q. For the inductive step, suppose the result holds for
all values smaller than q and let T be a tree. If ppw(T ) = 1, then T is a path
and mvams(T, r) = 1 for any r, as required. Otherwise, by [10], we may write
T = Y(T1, T2, T3) where, for each i, ppw(Ti) = ppw(T ) − 1. By the inductive
hypothesis, for each i, mvams(Ti, � r

2�) ≥ min {ppw(T )−1, q−1}. By Lemma 9,
mvams(T, r) ≥ min {ppw(T )−1, q−1}+1 = min {ppw(T ), q}, as required. ��

This completes our characterization of the number of cops required to catch r
robbers in a tree.

Theorem 11. For any tree T and any r ≥ 1,

mvams(T, r) = min {ppw(T ), �log r� + 1} .

For general graphs, we are able to give the following upper bound.

Theorem 12. For any graph G and any r ≥ 1,

mvams(G, r) ≤ min {ppw(G),ptw(G) · (�log r� + 1)} .

Proof (sketch). mvams(G, r) ≤ ppw(G) by Corollary 7. For the other case, let
q = ptw(G). We have G � Kq × T for some tree T and we can find r robbers
in Kq × T by following the strategy for T but using q cops to cover the clique
in Kq × T corresponding to a single vertex in T . The result follows by Lemma 8
and Proposition 2. ��
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6 Conclusions and Open Problems

We have presented our results in the setting of mixed search (searching with
placement, removal and sliding of cops). For node search (searching with only
placement and removal), we can similarly define parameters vans(G, r) and
mvans(G, r) for the general and monotone node search number for r visible,
active robbers. Similarly, we can adapt all our other mixed-search parameters
to node search. The difference between mixed search and node search is small:
node search can be reduced to mixed search and requires at most one more cop.

We could, in principle, rewrite the present paper in terms of node search.
Writing pw(G) and tw(G) for the well-known parameters of pathwidth and
treewidth, it can be shown that, for a graph of order n, vians(G, 1) = tw(G)+1
and vians(G, n) = pw(G) + 1 (using the results in [3, 8]). Our core results, in
this setting, are that, for any tree T and graph G,

mvans(T, r) = min {pw(T ), �log r� + 1} + 1
mvans(G, r) ≤ min {pw(G) + 1, (tw(G) + 1) · (�log r� + 2)} .

The framework of this paper can also be applied to edge search. As this version
can also be reduced to mixed search [1,9] we make no further comments to this
direction.

The problem settled in this paper can be stated in the following way: what is
the maximum number of visible, active robbers that can be captured monoton-
ically by k cops in some graph G? This number is unbounded if k ≥ ppw(G)
and, otherwise, 2k−1 robbers can be caught in a tree and at least 2k/ptw(G)−1

in a general graph. This interpretation of our results may be useful for estimat-
ing how many sweeps of a graph a small number of cops need to catch a large
number of robbers.

We identify three main open problems in graph searching for many robbers.
The first is to find good lower bounds for mvams(G, r) in terms of G and r,
for general graphs, corresponding to the bounds for trees found in this paper.
We believe that this is a hard task as it appears to require the identification of
obstructions for mvams(G, r) for all r.

Another open problem is to find graph decompositions corresponding to the
game, tuning between (proper) tree decompositions, the case of one robber, and
(proper) path decompositions, the case of one robber per vertex. It is unclear
what form such a family of decompositions would take.

Finally, it would be interesting to know whether there is any relation between
our results and the search game defined by Fomin et al.[5]. That game has only
one robber but tunes between pathwidth and treewidth by limiting the number
of rounds at which the cops may ask for the robber’s position. This provides an
alternative way of tuning interactivity: the game is fully interactive if the cops
may ask for the robber’s position at every move and fully predetermined if they
may never ask for his position. Correspondingly, our game is fully interactive
with a single robber and fully predetermined with a robber for each vertex.
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Abstract. In graph searching, a team of searchers is aiming at captur-
ing a fugitive moving in a graph. In the initial variant, called invisible
graph searching, the searchers do not know the position of the fugitive
until they catch it. In another variant, the searchers know the position
of the fugitive, i.e. the fugitive is visible. This latter variant is called
visible graph searching. A search strategy that catches any fugitive in
such a way that, the part of the graph reachable by the fugitive never
grows is called monotone. A priori, monotone strategies may require
more searchers than general strategies to catch any fugitive. This is how-
ever not the case for visible and invisible graph searching. Two important
consequences of the monotonicity of visible and invisible graph searching
are: (1) the decision problem corresponding to the computation of the
smallest number of searchers required to clear a graph is in NP, and (2)
computing optimal search strategies is simplified by taking into account
that there exist some that never backtrack.

Fomin et al. (2005) introduced an important graph searching variant,
called non-deterministic graph searching, that unifies visible and invis-
ible graph searching. In this variant, the fugitive is invisible, and the
searchers can query an oracle that knows the current position of the
fugitive. The question of the monotonicity of non-deterministic graph
searching is however left open.

In this paper, we prove that non-deterministic graph searching is
monotone. In particular, this result is a unified proof of monotonicity
for visible and invisible graph searching. As a consequence, the decision
problem corresponding to non-determinisitic graph searching belongs to
NP. Moreover, the exact algorithms designed by Fomin et al. do compute
optimal non-deterministic search strategies.

Keywords: Graph searching, Treewidth, Monotonicity.

1 Introduction

Introduced in [14], graph searching is a game in which a team of searchers aims
at catching a fugitive moving in a graph. At each step of the game, a searcher
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can either be placed at or removed from a vertex of the graph [10]. The fugitive
is invisible, arbitrary fast and aware of the positions of the searchers. It can
move along paths of the graph as long as it does not cross any vertex occupied
by a searcher. The fugitive is caught when a searcher is placed at the vertex it
occupies, and it cannot flee because all the neighbors are occupied by searchers.
A search strategy for a graph G is a sequence of basic operations, i.e., place or
remove a searcher, that results in catching any invisible fugitive in G. The node
search number of a graph G, denoted by s(G), is the smallest integer k such that
it exists a search strategy for G using at most k searchers. Given a graph G, the
graph searching problem consists in computing an optimal search strategy for G,
i.e., a strategy that clears G using at most s(G) searchers.

During a search strategy, the vertices that are accessible by the fugitive
are said contaminated. A non-contaminated vertex is said clear. A strategy is
monotone if it does not allow recontamination, i.e., after having been cleared, a
vertex remains clear until the end of the strategy. LaPaugh [11] proved that “re-
contamination does not help” to catch an invisible fugitive. That is, for any graph
G, there exists a monotone search strategy of G using at most s(G) searchers. We
say that invisible graph searching is monotone. LaPaugh’s proof was later sim-
plified by Bienstock and Seymour [4] using the concept of crusades. Both these
proofs are constructive. Indeed, they transform any strategy into a monotone
one without increasing the number of searchers.

In [17], Seymour and Thomas introduce the visible graph searching. In this
variant [5,17], the searchers are aware of the position of the fugitive. Hence, they
can adapt their strategy according to its position. The visible search number of
a graph G, denoted by vs(G), is the smallest integer k such that k searchers are
sufficient to catch any visible fugitive in G. Seymour and Thomas [17] proved
that visible graph searching is monotone. However, Seymour and Thomas’ proof
is not constructive. They show that, if no monotone strategies using k searchers
exist for a graph G, then there exists an escape strategy for the fugitive which
actually is a general escape strategy, and thus, no non-monotone strategies using
at most k searchers allow to catch any visible fugitive in G.

Monotonicity plays a crucial role in graph searching. First, a monotone strat-
egy conludes in a polynomial number of steps and thus, gives a certificate of
polynomial size for the decision problem corresponding to the graph searching
problem. Since the decision problems corresponding to the visible and invisi-
ble graph searching problems are known to be NP-hard [12,17], they are NP-
complete. Second, it appears algorithmically difficult to design strategies that are
not monotone. Last but not least, monotone strategies for catching an invisible
(resp., visible) fugitive in a graph G correspond exactly to path-decompositions
(resp., tree-decompositions) [15] of G.

Indeed, the importance of visible graph searching and invisible graph searching
comes from their close relationship with crucial notions of graph theory: treewidth
and pathwidth [15]. Roughly speaking, the treewidth tw(G) (resp., the pathwidth
pw(G)) of a graph G measures how close this graph is from a tree (resp., a path).
The correspondence between search numbers and width parameters provides
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different interpretations of these parameters, and thus, different ways of handling
them. More precisely, s(G) = pw(G) + 1 (see [6,10]), and vs(G) = tw(G) + 1
(see [5,17]).

In [7], Fomin et al. provide a unique approach to the pathwidth and the
treewidth of a graph. For any graph G and any q ≥ 0, they define the notions
of q-branched tree decomposition and q-branched treewidth, denoted by twq(G).
Roughly speaking, a q-branched tree decomposition of a graph is a parame-
trized tree decomposition such that the number of branching nodes of the tree is
limited. In particular, path-decompositions are exactly 0-branched tree decom-
positions, and tree-decompositions are exactly ∞-branched tree decompositions.

Fomin et al. also provide an interpretation of q-branched tree decompositions
in terms of graph searching. More precisely, they provide a unique approach
to both visible and invisible search problems, called non-deterministic graph
searching. In this variant, the fugitive is invisible. However, the searchers can
query an oracle that knows the position of the fugitive. Given the set S ⊆ V (G)
of clear vertices, a query returns a connected component C of G \ S, and all
vertices in G \ C are cleared. The choice of C is nondeterministic. Intuitively,
the oracle gives the position of the fugitive to the searchers. More formally, the
searchers can perform one of the following three basic operations called search
steps : (1) place a searcher at a vertex of the graph, (2) remove a searcher from
a vertex of the graph, and (3) perform a query to the oracle.

The number of query steps that the searchers can perform is however limited.
For q ≥ 0, the monotone q-limited search number msq(G) of a graph G is the
smallest number of searchers required to catch any fugitive in G in a monotone
way performing at most q queries. The main result of Fomin et al. [7] is the
following generalization of the above two equations:

For any graph G and any q ≥ 0, twq(G) + 1 = msq(G). (1)

Moreover, Fomin et al. [7] prove the NP-completness of the problem of com-
puting msq(G), for any q ≥ 0. Using the correspondence between monotone
q-limited graph searching and q-branched treedecomposition, they also design
an exact exponential algorithm that computes twq(G) and the corresponding
decomposition, for any graph G and any q ≥ 0.

However, Fomin et al. only consider monotone non-deterministic search strate-
gies. They left open the problem whether recontamination helps for q-limited
graph searching, for any q ≥ 0. This paper answers this question.

1.1 Our Results

Let G be a graph and q ≥ 0. Let sq(G) denotes the smallest number of searchers
required to catch any fugitive in G performing at most q queries. We prove that,
for any graph G and any q ≥ 0, recontamination does not help to catch a fugitive
in G performing at most q queries. In other words, we prove that for any graph
G and any q ≥ 0, there exists a monotone search strategy of G using at most
sq(G) searchers, i.e. sq(G) = msq(G). In particular, this implies that the decision
problem related to non-deterministic graph searching is in NP. This also implies
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that the exponential exact algorithm designed in [7] actually computes sq(G) for
any graph G and any q ≥ 0. More interestingly, our result unifies the proof of the
monotonicity of invisible graph searching [4] and the proof of the monotonicity
of visible graph searching [17]. The original proof of the monotonicity of visible
graph searching is not constructive, while our proof is constructive and turns
any general strategy into a monotone one.

1.2 Related Works

The monotonicity property of several graph searching variants has been studied
before. In [2], Barrière et al. have defined the connected graph searching. A search
strategy is connected if, at any step of the strategy, the subgraph induced by
the clear vertices is connected. Barrière et al. [2] proved that connected graph
searching is monotone as long as the input graph is restricted to be a tree.
However, this does not remain true in case of arbitrary graphs. Yang et al. [18]
proved that there exist graphs for which ”recontamination does help” to catch
an invisible fugitive in a connected way. In [8], Fraigniaud and Nisse proved that
recontamination does help as well to catch a visible fugitive in a connected way.

In [9], Johnson et al. introduced directed graph searching. In this variant of
the game, a visible fugitive is moving in a digraph. However, it is only permitted
to move to vertices where there exists a directed searcher-free path from its
intended destination back to its current position. The authors exhibit a graph
for which recontamination does help. Obdrzálek [13] and Berwanger et al. [3]
independamently defined a new visible graph searching game in a digraph by
relaxing the latter constraint. The question of the monotonicity of this latter
variant is however left open. In [1], Barát studies the monotonicity property of
a search strategy for catching invisible fugitive moving in a digraph. He proves
that mixed-graph searching is monotone in directed graph.

2 Formal Definitions

In this paper, G = (V, E) will denote a connected graph with vertex-set V and
edge-set E. For A ⊆ E, we denote by V [A] the set of vertices incident to at
least one edge in A. The border of two disjoint edge sets A and B is the set
δ(A, B) = V [A] ∩ V [B] of the vertices incident both to an edge in A and to an
edge in B. We extend this definition to any family of pair-wise disjoint edge sets
{X1, . . . , Xp} by setting δ(X1, · · · , Xn) =

⋃

1≤i<j≤n δ(Xi, Xj). The border δ(X)
of X ⊆ E denotes the set δ(X, E \ X).

2.1 Non-deterministic Graph Searching

Now, we formally define the notion of non-deterministic search strategy. Intu-
itively, given a graph G, a non-deterministic search strategy (or simply a non-
deterministic strategy) for G is a sequence of pairs, such that each pair consists
of a subset of V , the positions of searchers, and a subset of E, the clear part
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of G. More precisely, a non-deterministic strategy is a sequence of ordered pairs
(Zi, Ai)i∈[0,l] such that

• for any 0 ≤ i ≤ l, Zi ⊆ V and Ai ⊆ E;
• Z0 = ∅ and A0 = ∅;
• for any 0 ≤ i < l one of the following holds

– (placing searchers) there is Xi+1 ⊆ V , such that Zi+1 = Zi ∪ Xi+1 and
Ai+1 = Ai ∪ Bi+1 with Bi+1 the set of edges with both ends in Zi+1, or

– (removing searchers) there is Xi+1 ⊆ V , such that Zi+1 = Zi \Xi+1 and
Ai+1 is obtained from Ai by recursively removing the edges {x, y} ∈ Ai

with y 
∈ Zi+1 and such that there is z ∈ V with {y, z} 
∈ Ai+1, or
– (performing a query) Zi+1 = Zi and Ai+1 is the set of edges not incident

to a vertex of C, one of the connected component of G \ Zi not incident
to a vertex of Ai. The choice of C is non-deterministic.

For any 0 ≤ i ≤ l, (Zi, Ai) is the configuration reached by the strategy at
the ith step. A strategy (Zi, Ai)i∈[0,l] uses at most k ≥ 1 searchers if, for any
0 ≤ i ≤ l, |Zi| ≤ k. A non-deterministic search program is a non-deterministic
program that takes as input a graph G and an integer k ≥ 1, and returns a
non-deterministic strategy for G using at most k searchers. A non-deterministic
search program wins if for every possible fugitive moves, at least one of the
strategies that the program computes catches the fugitive. That is, for any non-
deterministic choice of the component C during the “performing a query” steps,
the computed strategy insures that Al = E. A non-deterministic search program
is monotone if the strategies that it computes are monotone. The number of
searchers required by a non-deterministic strategy is the maximum number of
searchers required by the strategies that it computes.

A q-limited non-deterministic search program (or simply, a q-program) is a
non-deterministic search program that computes strategies using at most q query
steps. The q-limited search number (or simply the q-search number) of a graph
G, denoted by sq(G), is the smallest number of searchers required by a q-program
to win against any fugitive in G. Similarily, we define the monotone q-limited
search number of a graph G, denoted by msq(G), as the smallest number of
searchers required by a monotone q-program to win against any fugitive in G.

If q = 0, no non-deterministic steps are allowed, and the previous definition
is similar to the usual definition of an invisible search strategy [10]. Note that,
in this case, the deterministic strategy (Zi, Ai)i∈[0,l] wins, if and only if, there is
0 < i ≤ l such that, for any j ≥ i, Aj = E.

2.2 Branched Treewidth

Fomin et al. [7] defined a parametrized version of the tree-decomposition of a
graph. Their main result is the interpretation of this decomposition in terms of
graph searching.

A tree decomposition [15] of graph G is a pair (T, X ) where T is a tree of
node set I, and X = {Xi, i ∈ I} is a collection of subsets of V (G) satisfying the
following three conditions:



38 F. Mazoit and N. Nisse

i. V (G) = ∪i∈IXi;
ii. for any edge e of G, there is a set Xi ∈ X containing both end-points of e;
iii. for any i1, i2, i3 ∈ I with i2 is on the path from i1 to i3 in T , Xi1 ∩Xi3 ⊆ Xi2 .

The width w(T, X ) of a tree decomposition is maxi∈I

{

|Xi|−1
}

and the treewidth
of a graph is the minimum width over all its tree-decompositions.

A rooted tree decomposition of a graph G, denoted by (T, X , r), is a tree de-
composition (T, X ) of G such that T is a rooted tree and r is its root. A branching
node of a rooted tree decomposition is a node with at least two children. For any
q ≥ 0, a q-branched tree decomposition [7] (or simply, a q-tree decomposition) of
a graph G is a rooted tree decomposition (T, X , r) of G such that every path in
T from the root r to a leaf contains at most q branching nodes. Thus a path de-
composition rooted at one of its extremities is a 0-branched tree decomposition,
and a usual tree decomposition is a ∞-branched tree decomposition. For any
graph G, the q-branched treewidth (or simply, the q-treewidth) of G, denoted by
twq(G), is the minimum width of any q-tree decomposition of G.

Theorem 1. [7] Let G be a graph, q ≥ 0 and k ≥ 1. There is a winning
monotone q-program using at most k searchers in G if and only if twq(G) < k.

2.3 Search-Tree

To prove the monotonicity of non-deterministic graph searching, we define an
auxiliary structure called search-tree which is inspired by the tree-labelling de-
fined by Robertson and Seymour [16].

A search-tree of a graph G is a triple (T, α, β) with T a tree, α a mapping
from the incidence (between vertices and edges) of T into the subsets of E and
β a mapping from the vertices of T into the subsets of E such that:

• for any edge e = {u, v} of T , α(u, e) ∩ α(v, e) = ∅;
• for no leaf v of T incident to an edge e of T is such that α(v, e) = E;
• for any node v of T incident to e1, . . . , ep,

{

β(v)
}

∪ μ(v) is a (possibly de-
generated) partition of E with μ(v) = {α(v, e1), . . . , α(v, ep)}.

We extend the function β to any sub-tree T ′ of T by setting β(T ′) = ∪v∈T ′β(v).
The width of a search-tree is defined as w(T, α, β) = maxv∈V (T ){|χv|} where
χv = V

[

β(v)
]

∪ δ
(

μ(v)
)

and |χv| denotes the weight of the node v ∈ V (T ). As
for tree decompositions, we consider rooted search-trees, denoted by (T, α, β, r),
that are search-trees over rooted trees. A branching node of a rooted search-tree
is a node with at least two children. For any q ≥ 0, a q-branched search-tree is a
rooted search-tree (T, α, β, r) of G such that every path in T from the root r to
a leaf contains at most q branching nodes. An edge e = {u, v} of a search-tree is
monotone if α(u, e) = E \ α(v, e), and a search-tree is monotone if all its edges
are monotone. Edges that are not monotone are said dirty.

3 Monotonicity of Non-deterministic Graph Searching

The remaining part of the paper is devoted to prove the monotonicity of non-
deterministic graph searching. For this purpose, we prove that, from any winning
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q-program using at most k searchers in a graph G, we can build a q-branched
search-tree of width at most k for G (Lemma 1). Then, by performing local opti-
misations, we transform any q-search-tree into a monotone one (Lemma 3) with-
out increasing its width. To conclude, any monotone q-branched search-tree, of
width k, of a graph G can be transformed into a q-branched tree-decomposition,
of width at most k − 1, of G (Lemma 5). Then, the proof of the monotonicity
property of non-deterministic graph searching follows from Theorem 1. More
formally, we prove the following theorem:

Theorem 2. Let G be a connected graph, q ≥ 0 and k ≥ 2. The following are
equivalent:

i. There is a winning q-program for G using at most k searchers;
ii. There is a q-search-tree of width at most k for G;
iii. There is a monotone q-search-tree of width at most k for G;
iv. There is a q-tree decomposition of width at most k − 1 for G;
v. There is a winning monotone q-program for G using at most k searchers.

Proof. We prove that (i) ⇒ (ii) (Lemma 1), (ii) ⇒ (iii) (Lemma 3), (iii) ⇒
(iv) (Lemma 5). Proposition (iv) ⇒ (v) follows from Theorem 1 and (v) ⇒ (i)
is obvious.

3.1 From Strategies to Search-Trees

Lemma 1. Let G be a connected graph, q ≥ 0 and k ≥ 2, (i) ⇒ (ii).

i. There is a winning q-program using at most k searchers for G;
ii. There is a q-search-tree of width at most k for G.

Proof. In this proof, we consider extended search programs whose the start-
ing configuration is not necessarily the (∅, ∅) configuration. That is, we consider
search programs whose strategies start from a configuration (Z0, A0) that sat-
isfies δ(A0) ⊆ Z0. The length of a search program is the maximum number of
steps of the strategies it computes. Let us define the partial width of a rooted
search tree as the maximum weight of its nodes, the maximum being taken over
all the nodes of the search-tree but its root. We prove the following claim by
induction on the length of the search program.

Claim. For every winning q-program using at most k searchers with (Z0, A0)
as starting configuration, there is a rooted q-search-tree (T, α, β, r) of partial
width at most k, and such that, r is incident to a unique edge e ∈ E(T ), and
α(r, e) = E \ A0.

Let q ≥ 0 and let S be a q-program on G with k searchers and with (Z0, A0)
as starting configuration.

• Suppose that S has length 1.
The only search step has to be a ”placing searchers” step. Thus, S computes
only the following 0-strategy: (Z0, A0), (Z1, A1) in which Z1 = Z0 ∪ X1 and
A1 = A0 ∪ B1 = E.
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Define the tree T with only one edge {r, v}, β(v) = α(r, {r, v}) = E \ A0
and β(r) = α(v, {r, v}) = A0. Since V

[

β(v)
]

∪ δ(μv) = V [E \ A0] which is a
subset of Z1, (T, α, β, r) is a rooted 0-search tree of partial width at most k.

• Suppose that S has length l > 1. Let us assume that for any winning q-
program S′ using at most k searchers with (Z, A) as starting configuration
(with δ(A) ⊆ Z) and such that S′ has length l′ < l, there is a rooted q-search-
tree (T, α, β, r) of partial width at most k, and such that, r is incident to a
unique edge e ∈ E(T ), and α(r, e) = E\A. Consider S′ obtained by removing
the first configuration of the sequences of S. Note that, S′ is strictly shorter
than S. We consider three cases according to the type of the first step of S.
a. if the first step of S is a ”removing searchers” step, S′ is a q-program with

(Z1, A1) as a starting configuration, Z1 ⊆ Z0 and A1 ⊆ A0. According
to the induction hypothesis, there is a rooted q-search-tree (T ′, α′, β′, r′)
of partial width at most k and such that there is an edge e′ incident to
r′ with α′(r′, e′) = E \ A1.

Define a new q-search-tree (T, α, β, r) from (T ′, α′, β′, r′) as follows:
– add a new leaf r linked to r′ in T ′, and set r as the new root,
– put α

(

r, {r, r′}
)

= E \ A0, α(r′, {r, r′}) = A1 and α = α′ otherwise;
– put β(r) = A0, β(r′) = ∅ and β = β′ otherwise.

Since A1 ⊆ A0, α(r, {r, r′})∩α(r′, {r, r′}) = ∅ and (T, α, r) is a q-search-
tree. Moreover, V

[

β(r′)
]

∪ δ
(

μ(r′)
)

⊆ Z1 and (T, α, β, r) satisfies the
required conditions.

b. if the first step of S is a ”placing searchers” step, S′ is a q-program with
(Z1, A1) as a starting configuration, Z1 = Z0 ∪ X1 and A1 = A0 ∪ B1.
According to the induction hypothesis, there is a rooted q-search-tree
(T ′, α′, β′, r′) of partial width at most k and such that there is an edge
e′ incident to r′ with α′(r′, e′) = E \ A1.
Define a new q-search-tree (T, α, β, r) from (T ′, α′, β′, r′) as follows:

– add a new leaf r linked to r′ in T ′, and set r as the new root,
– put α

(

r, {r, r′}
)

= E \ A0, α(r′, {r, r′}) = A0 and α = α′ otherwise;
– set β(r) = A0, β(r′) = B1 and β = β′ otherwise.

By construction, (T, α, β, r) is a q-search-tree that satisfies the required
conditions.

c. if the first step of S is a ”performing a query” step, there are p ≥ 1
distinct (q −1)-programs S1, . . . , Sp for G such that: {A0, E \Y1, . . . , E \
Yp} is a partition of E, and, for any 1 ≤ i ≤ p, Si is a winning (q − 1)-
program for G, starting from the configuration (Zi, Yi) and using at most
k searchers. For any 1 ≤ i ≤ p, since the (q − 1)-programs Si are shorter
than S, there exists a rooted (q − 1)-search-tree (Ti, αi, βi, ri) of partial
width at most k, and such that there is an edge ei incident to ri with
αi(ri, ei) = E \ Yi.
Define a new q-search-tree (T, α, β, r) from these search-trees as follow:

– identify the roots ri with a node r′, add a new leaf r linked to r′ in
T ′, and set r as the new root,.

– put α(r, {r, r′}) = E \ A0, α(r′, {r, r′}) = A0 and α(u, e) = αi(u, e)
for every edge e of Ti;
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– put β(r) = A0, β(r′) = ∅, and, for any 1 ≤ i ≤ p and any node u of
Ti, β(u) = βi(u).

The rooted search-tree (T, α, β, r) has one more branching node than
any search-tree (Ti, αi, βi, ri) and, since each of them has at most q − 1
branching nodes, (T, α, β, r) satisfies the required conditions.

Therefore, for any winning q-program S using at most k searchers with
(Z0, A0) as starting configuration (with δ(A0) ⊆ Z0) and such that S has
length l, there is a rooted q-search-tree (T, α, β, r) of partial width at most k,
and such that, r is incident to a unique edge e ∈ E(T ), and α(r, e) = E \A0.
This concludes the induction and the proof of the claim.

To conclude the proof, is it sufficient to note that, if A0 = ∅, the weight of the
root of the search-tree equals 0. Thus, its partial width equals its width.

3.2 From Search-Trees to Monotone Search-Trees

To prove the second step of the proof, we need the following technical lemma.

Lemma 2. Let G = (V, E) be a connected graph, μ = {E1, . . . , Ep} be a (possi-
bly degenerated) partition of E and F ⊆ E \ E1. Set E′

1 = E \ F , E′
i = Ei ∩ F

for 2 ≤ i ≤ p and μ′ = {E′
1, . . . , E

′
p}.

If |δ(F )| ≤ |δ(E1)| then |δ(μ′)
∣

∣ ≤
∣

∣δ(μ)
∣

∣

If |δ(F )| < |δ(E1)| then |δ(μ′)
∣

∣ <
∣

∣δ(μ)
∣

∣

Proof. Since δ(E1) ⊆ δ(μ) and δ(F ) ⊆ δ(μ′), we get that
∣

∣δ(μ)
∣

∣ =
∣

∣δ(μ)\δ(E1)
∣

∣+
∣

∣δ(E1)
∣

∣ and
∣

∣δ(μ′)
∣

∣ =
∣

∣δ(μ′) \ δ(F )
∣

∣ +
∣

∣δ(F )
∣

∣. This implies that
∣

∣δ(μ)
∣

∣ −
∣

∣δ(μ′)
∣

∣ =
(

∣

∣δ(μ) \ δ(E1)
∣

∣ +
∣

∣δ(E1)
∣

∣

)

−
(

∣

∣δ(μ′) \ δ(F )
∣

∣ +
∣

∣δ(F )
∣

∣

)

=
∣

∣δ(E1)
∣

∣ −
∣

∣δ(F )
∣

∣ +
(

∣

∣δ(μ) \ δ(E1)
∣

∣ −
∣

∣δ(μ′) \ δ(F )
∣

∣

)

To complete the proof, it is sufficient to show that δ(μ′)\ δ(F ) ⊆ δ(μ)\ δ(E1).
To prove this latter assertion, first note that any vertex w ∈ δ(E1) ∩ δ(μ′)

belongs to δ(F ). Indeed, w ∈ δ(μ′) implies, by definition of μ′, the existence of
e1 ∈ F incident to w. Beside, w ∈ δ(E1) implies the existence of e2 ∈ E1 incident
to w. Since E1 ⊆ E\F , we have e1 ∈ F and e2 
∈ F . Therefore, w ∈ δ(F ). Hence,
we obtain that

(

δ(μ′) \ δ(F )
)

∩ δ(E1) = ∅. Finally, since δ(μ′) \ δ(F ) ⊆ δ(μ), it
implies that δ(μ′) \ δ(F ) ⊆ δ(μ) \ δ(E1). That concludes the proof.

Lemma 3. Let n > 0. Let G be a n-node connected graph, q ≥ 0 and k ≥ 2,
(ii) ⇒ (iii).

ii. There is a q-search-tree of width k on G;
iii. There is a monotone q-search-tree of width k on G.

Proof. Let T = (T, α, β, r) be a rooted q-search-tree of G of width k.
For every edge e of T , denote by dist(e) the distance of e to the root r.

The weight wg(T ) of T is
∑

v∈V (T )

∣

∣δ
(

μα(v)
)∣

∣ and the badness bn(T ) of T is
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∑

n−dist(e) the sum being taken over the dirty edges of T . Let T1 and T2 be
two rooted q-search-trees. T1 is tighter than T2 if either wg(T1) < wg(T2), or
wg(T1) = wg(T2) and bn(T1) < bn(T2).

The remaining part of this lemma is devoted to prove that the tightest search-
tree among any q-search-tree of width k of G is monotone. For this purpose, we
make local optimisations that are compatible with the above relation. Let {u, v}
be a dirty edge of T .

a. Let us assume that
∣

∣δ
(

α(u, {u, v})
)∣

∣ <
∣

∣δ
(

α(v, {u, v})
)∣

∣.
• Let us assume that v is a leaf. If α(u, {u, v}) = ∅, just remove the leaf

(by setting u as the new root, if r = v). Otherwise, set α(v, {u, v}) =
E \ α(u, {u, v}) and β(v) = α(u, {u, v}). The resulting search-tree is
tighter than T .

• Now, let us assume that v is an internal node of T . Set u = u1, let
u2, . . . , up be the other neighbours of v, set α(v, {v, ui}) = Ei, μv =
{E1, . . . , Ep} and F = α(u, {u, v}) so that the condition on {u, v} can
be rephrased as

∣

∣δ(E1)
∣

∣ >
∣

∣δ(F )
∣

∣. Let us modify T by setting β(v) =
β(v) ∩ F , α(v, vui) = E′

i for 1 ≤ i ≤ p. Since, E′
i ⊆ Ei for 2 ≤ i ≤ p and

E′
1 = E \ F , we obtain a new q-search-tree T ′. It remains to prove that

T ′ is tighteer than T . Let ηv be the partition {E1, . . . , Ep, β(v)} of E.
Consider η′

v = {E′
1, . . . , E

′
p, β(v)∩F} with E′

1 = E \F , and E′
i = Ei ∩F

for 2 ≤ i ≤ p. By lemma 2,
∣

∣δ(η′
v)

∣

∣ <
∣

∣δ(ηv)
∣

∣.
Beside, |χT (v)| = |δ(μv) ∪ V [β(v)]| = |δ(ηv) ∪ (V [β(v)] \ δ(β(v)))| =

|δ(ηv)| + |V [β(v)] \ δ(β(v))| > |δ(η′
v)| + |V [β(v) ∩ F ] \ (δ(β(v) ∩ F ))| =

|δ(E′
1, . . . , E

′
p) ∪ V [β(v) ∩ F ]| = |χ′

T (v)|. Thus, T ′ has strictly smaller
weight than T . Therefore, T ′ is tighter than T .

b. Let us assume that
∣

∣δ
(

α(u, {u, v})
)∣

∣ =
∣

∣δ
(

α(v, {u, v})
)∣

∣. We can suppose
without loss of generality that u is closer to the root r than v.

• Let us assume that v is a leaf. We set α(v, {u, v}) = E \ α(u, {u, v}) and
β(v) = α(u, {u, v}). The resulting search-tree T ′ is such that wg(T ′) ≤
wg(T ), and has smaller badness. Thus, T ′ is tighter than T .

• Now, let us assume that v is an internal node of T . We consider exactly
the same new q-search-tree T ′ as in the second item of case a. The
only difference is that using lemma 2, we only get

∣

∣δ(η′
v)

∣

∣ ≤
∣

∣δ(ηv)
∣

∣ and
thus wg(T ′) ≤ wg(T ). However, in T ′, the edge {u, v} is monotone.
Moreover, the only edges that were monotone in T , and that could have
become dirty are the edges {v, ui} for 2 ≤ i ≤ p. Since p ≤ n + 1 and
dist({v, ui}) = dist({v, u}) + 1 for 2 ≤ i ≤ p, we have

bn(T ) − bn(T ′) ≥ n−dist({u,v}) −
p

∑

i=2

n−dist({v,ui})

≥ n−dist({u,v}) − (n − 1)n−dist({v,u})−1 > 0
The q-search-tree T ′ is tighter than T .

If a q-search-tree of width k has a dirty edge, we can algorithmically turn
it into a new q-search-tree of width at most k which is tighter. Since there are
no infinitely decreasing sequences for this relation, there exists a monotone q-
search-tree of width at most k.
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3.3 From Monotone Search-Trees to Tree Decompositions

The two following lemmas conclude the third step of the proof of Theorem 2.

Lemma 4. Let G be a connected graph and T = (T, α, β, r) be a monotone
search-tree on G. For any edge {u, v} of T , α(u, {u, v}) = β(Tv) with Tv the
connected component of T \ {u, v} that contains v.

Proof. We prove this by induction of |V (Tv)|.

• if |V (Tv)| = 1, then β(v) = E \ α(v, {u, v}) and since α(u, {u, v}) = E \
α(v, {u, v}) (T is monotone), we have α(u, {u, v}) = β(v) = β(Tv).

• otherwise, let w1, . . . , wp be the neighbours of v in Tv and for 1 ≤ i ≤
p, let Twi be the connected components of Tv \ {v, wi} that contains wi.
By induction hypothesis, α(v, {v, wi}) = β(Twi). Since T is a search-tree,
the sets β(v), α(v, {u, v}) and β(Tw1), . . . , β(Twp) induce a partition of E,
thus α(v, {u, v}) = E \ β(Tv). Since T is monotone, α(u, {u, v}) = E \
α(v, {u, v}) = β(Tv) which finishes the proof.

Lemma 5. Let G be a connected graph, q ≥ 0 and k ≥ 2, (iii) ⇒ (iv).

iii. There is a monotone q-search-tree of width k on G;
iv. There is a q-tree decomposition of width at most k − 1 on G.

Proof. Let T = (T, α, β, r) be a q-search-tree of width k.
We claim that Θ =

(

T, X , r
)

with X = {χ(v) | v node of T } is a tree decom-
position of width at most k − 1. Since G is connected and |E| > 0, condition ii.
of a tree decomposition implies condition i.

Let {x, y} ∈ E be an edge of G. Since T is monotone, for every edge {u, v} of T ,
{x, y} belongs to either α(u, {u, v}) or α(v, {u, v}). Suppose {x, y} ∈ α(u, {u, v}),
by lemma 4, {x, y} ∈ β(Tv) with Tv the connected component of T \ {u, v} that
contains v. The edge {x, y} thus belongs to at least one β(w) for some node w
of Tv. By definition of χ(w), {x, y} ⊆ χ(w).

Let u, v, w be three nodes of T with v on the path {u, u′, . . . , v, . . . , w′, w}
from u to w. Let Tu (resp., Tw) be the connected component of T \{u, u′} (resp.,
T \ {w, w′}) that contains u (resp., w). Let T v

u (resp., T v
w) be the connected

component of T \ v that contains u (resp., w).
Let u1 = u′, . . . , up be the neighbours of u in T and x ∈ χ(u). Either there is

an edge of G incident to x in β(u), or there exist 1 < i ≤ p such that there is
an edge incident to x in α(u, {u, ui}). By lemma 4, there is an edge incident to
x in β(Tui) ⊆ β(Tu).

Suppose that x ∈ χ(u) ∩ χ(w). There exists an edge incident to x in β(T v
u ) ⊇

β(Tu) and an edge incident to x in β(T v
w) ⊇ β(Tw). By lemma 4, we get that

x ∈ δ(μv). Thus, x ∈ χ(v). This proves that Θ is a tree-decomposition. Moreover,
by construction, w(Θ) = w(T, α, β) − 1. Since both T and Θ use the same
underlying three, Θ is a q-tree decomposition of width at most k − 1.
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1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
V.Lozin@warwick.ac.uk

2 Universität Bielefeld, Technische Fakultät, D-33501 Bielefeld, Germany
mmilanic@cebitec.uni-bielefeld.de

Abstract. It is well known that boundedness of tree-width implies po-
lynomial-time solvability of many algorithmic graph problems. The con-
verse statement is generally not true, i.e., polynomial-time solvability
does not necessarily imply boundedness of tree-width. However, in graphs
of bounded vertex degree, for some problems, the two concepts behave
in a more consistent way. In the present paper, we study this phenom-
enon with respect to three important graph problems – dominating set,
independent dominating set and induced matching – and obtain sev-
eral results toward revealing the equivalency between boundedness of the
tree-width and polynomial-time solvability of these problems in bounded
degree graphs.

Keywords: Tree-width; Hereditary class of graphs; Dominating set; In-
duced Matching.

1 Introduction

It is well known that boundedness of tree-width implies polynomial-time solv-
ability of many algorithmic graph problems that are NP-hard in general [2], such
as independent set, dominating set, independent dominating set, in-

duced matching, etc. These problems can also be solved in polynomial time
in some classes of graphs that are not necessarily of bounded tree-width. For
instance, independent set admits a polynomial-time solution in the class of
claw-free graphs [19], dominating set and independent dominating set

are solvable for (claw, net)-free graphs [6] and convex bipartite graphs [8], and
induced matching for co-comparability graphs [10]. An interesting observa-
tion is that the tree-width of claw-free graphs remains unbounded even with the
additional restriction to graphs of bounded vertex degree, while for the other
listed examples this is not the case (see more about tree-width of bounded de-
gree graphs in [16,17]). This observation raises the question of the relationship
between boundedness of the tree-width and polynomial-time solvability of some
optimization problems in bounded degree graphs. In the present paper, we study
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this question with respect to dominating set, independent dominating set,
and induced matching problems. All our results refer to graph classes that
are hereditary in the sense that whenever a graph belongs to a class, all induced
subgraphs of the graph belong to the same class. Any hereditary class can be
described by a unique set of minimal graphs that do not belong to the class,
so-called forbidden induced subgraphs. The class of graphs containing no induced
subgraphs from a set M will be denoted Free(M). Our objective in this paper is
to reveal restrictions on the set M that would imply either boundedness of tree-
width and polynomial-time solvability of the above problems, or unboundedness
of tree-width and NP-hardness of the problems. To this end, we first identify
in Section 2 two types of restrictions under which the tree-width is unbounded
and the three problems in question are NP-hard. Then in Section 3 by violating
those restrictions we discover several areas where the tree-width is bounded and
hence the problems are solvable in polynomial time. In the rest of the present
section we give necessary definitions and notations.

Most notations we use are customary: V (G) and E(G) denote the vertex set
and the edge set of a graph G, respectively. The degree of a vertex v is the number
of edges incident with v. By Δ(G) we denote the maximum vertex degree in G.
The chordality of a graph G is the size of a largest chordless cycle in G. Given
a subset of vertices U ∈ V (G), we denote by G − U the subgraph induced by
V (G) − U . As usual, Cn and Pn denote the chordless cycle and the chordless
path on n vertices, respectively. For a graph G = (V, E), the line graph of G,
denoted L(G), is the graph whose vertex set is E, and whose two vertices are
adjacent if and only if they share a common vertex as edges of G.

A dominating set in a graph is a subset of vertices such that every vertex
outside the subset has a neighbor in it. The dominating set problem is that
of finding in a graph a dominating set of minimum cardinality.

A dominating set is independent if no two vertices of the set are connected by
an edge. The independent dominating set problem is to find in a graph an
independent dominating set of minimum cardinality.

A matching in a graph is a subset of edges no two of which have a vertex
in common. A matching is induced if no two endpoints of different edges of the
matching are connected by an edge. The induced matching problem asks to
find in a graph an induced matching of maximum size.

2 Classes of Graphs with Unbounded Tree-Width and
NP-Hard Problems

Let us denote by Hi the graph on the left of Figure 1 and by Sk the class of all
(C3, . . . , Ck, H1, . . . , Hk)-free graphs of vertex degree at most 3.

The following lemma combines four results proved in [5,13,14,18].

Lemma 1. For any k ≥ 3, in the class Sk the tree-width is unbounded and the
following problems are NP-hard: dominating set, independent dominating

set, induced matching.
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Fig. 1. Graphs Hi (left) and Li (right)

To state the main result of this section, let us associate with every graph G the
following parameter: κ(G) is the maximum k such that G ∈ Sk. If G belongs to
no class Sk, we define κ(G) to be 0, and if G belongs to all classes Sk, then κ(G)
is defined to be ∞. Also, for a set of graphs M , we define κ(M) = sup{κ(G) :
G ∈ M}. With these definitions in mind, we can now prove the following result.

Theorem 1. Let X be the class of M -free graphs of vertex degree at most 3.
If κ(M) < ∞, then in the class X the tree-width is unbounded and the follow-
ing problems are NP-hard: dominating set, independent dominating set,
induced matching.

Proof. To prove the theorem, we will show that there is a k such that Sk ⊆ X .
Denote k := κ(M) + 1 and let G belong to Sk. Assume that G does not belong
to X . Then G contains a graph A ∈ M as an induced subgraph. From the
choice of G we know that A belongs to Sk, but then k ≤ κ(A) ≤ κ(M) < k, a
contradiction. Therefore, G ∈ X and hence, Sk ⊆ X . ��
In what follows, we present another theorem of a similar nature. Again, we start
with a preparatory lemma. Denote the class of line graphs of graphs in Sk by Tk.

Lemma 2. For any k ≥ 3, in the class Tk the tree-width is unbounded and the
following problems are NP-hard: dominating set, independent dominating

set, induced matching.

Proof. For the tree-width, the statement of this lemma is a consequence of
Lemma 1 and the following two facts: first, the relationship connecting the tree-
width of a graph G with the clique-width of its line graph

(tw(G) + 1)/4 ≤ cw(L(G)) ≤ 2tw(G) + 2

proved in [11], and second, the fact that the clique-width of a graph is bounded
above by a function of its tree-width [7].

To prove the lemma for the dominating set problem, we observe that finding
a minimum dominating set in the line graph of G is equivalent to finding a min-
imum edge dominating set in G. It was shown in [1] that the edge dominating
set problem is NP-hard in the class Sk for any fixed k. Together with Lemma 1
this implies the desired conclusion for the dominating set problem. For the in-
dependent dominating set problem this conclusion follows from the fact that in
the class of line graphs this problem is equivalent to the dominating set problem
[21]. Finally, to prove the lemma for the induced matching problem, we use the
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reduction from the P3-factor problem in a graph G to the induced matching

problem in L(G) [12] and the fact that P3-factor is NP-hard for graphs in the
class Sk [1]. ��

By analogy with the parameter κ(G), we define one more parameter λ(G), as
follows: λ(G) is the maximum k such that G ∈ Tk. If G belongs to no Tk, then
λ(G) := 0, and if G belongs to every Tk, then λ(G) := ∞. For a set of graphs
M , we define λ(M) = sup{λ(G) : G ∈ M}. The following theorem is a direct
analogue of Theorem 1.

Theorem 2. Let X be the class of M -free graphs of vertex degree at most 3.
If λ(M) < ∞, then in the class X the tree-width is unbounded and the follow-
ing problems are NP-hard: dominating set, independent dominating set,
induced matching.

3 Classes of Graphs with Bounded Tree-Width

Let Δ ≥ 3 be a fixed integer and let M be a set of graphs. The results of the
previous section suggest that the tree-width of M -free graphs of vertex degree
at most Δ is bounded only if

κ(M) is unbounded and λ(M) is unbounded. (1)

In the present section, we identify several areas where condition (1) is sufficient
for boundedness of the tree-width. First of all, let us reveal three major ways to
push κ(M) to infinity.

One of the possible ways to unbound κ(M) is to include in M a graph G
with κ(G) = ∞. According to the definition, in order κ(G) to be infinite, G
must belong to every class Sk. It is not difficult to see that this is possible
only if every connected component of G is of the form Si,j,k represented in
Figure 2 (left). Let us denote the class of all such graphs by S. More formally,
S :=

⋂

k≥3
Sk. Any other way to push κ(M) to infinity requires the inclusion in M

of infinitely many graphs. We distinguish two particular ways of achieving this
goal: M ⊇ {Hk, Hk+1, . . .} and M ⊇ {Ck, Ck+1, . . .} for a constant k.

Translating the above three conditions to the language of line graphs, we
obtain three respective ways to unbound λ(M). In the first one, we include in
M a graph G with λ(G) = ∞, i.e., the line graph of a graph in S. Let us denote
the class of all such graphs by T . In other words, T is the class of graphs every
connected component of which has the form Ti,j,k represented in Figure 2, or
equivalently, T =

⋂

k≥3
Tk. Also, λ(M) is unbounded if M ⊇ {Lk, Lk+1, . . .},

where Li is the line graph of Hi+1 (see Figure 1). Finally, λ(M) is unbounded
if M ⊇ {Ck, Ck+1, . . .}, since the line graph of a cycle is the cycle itself.

In the rest of this section, we consider all possible combinations of the above
ways to unbound κ(M) and λ(M), and show that each of the combinations leads
to a class of graphs of bounded tree-width.
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Fig. 2. Graphs Si,j,k (left) and Ti,j,k (right)

The above discussion suggests the following nine ways of restricting the set
M :

(i) M ∩ S �= ∅ and M ∩ T �= ∅,
(ii) M ∩ S �= ∅ and M ⊇ {Lk, Lk+1, . . .} for some k ≥ 1,

(iii) M ∩ S �= ∅ and M ⊇ {Ck, Ck+1, . . .} for some k ≥ 3,
(iv) M ∩ T �= ∅ and M ⊇ {Hk, Hk+1, . . .} for some k ≥ 1,
(v) M ⊇ {Hk, Lk, Hk+1, Lk+1, . . .} for some k ≥ 1,

(vi) M ⊇ {Hk, Ck, Hk+1, Ck+1, . . .} for some k ≥ 3,
(vii) M ∩ T �= ∅ and M ⊇ {Ck, Ck+1, . . .} for some k ≥ 3,

(viii) M ⊇ {Ck, Lk, Ck+1, Lk+1, . . .} for some k ≥ 3,
(ix) M ⊇ {Ck, Ck+1, . . .} for some k ≥ 3.

We can immediately disregard conditions (iii), (vi), (vii) and (viii), as they
are dominated by (ix). We discuss the remaining five cases individually.

(1) Excluding a graph from S and a graph from T . It was shown in [16]
that exclusion of a graph from S and a graph from T results in a class in which
every graph of bounded vertex degree has bounded tree-width. Since we will
make use of this result later on in this section, we restate it here.

Theorem 3 ([16]). For any positive integer Δ and any two graphs S ∈ S and
T ∈ T there is an integer N such that every graph of vertex degree at most Δ
with no induced subgraphs isomorphic to S or T has tree-width at most N .

(2) Excluding large cycles. Excluding large cycles bounds the tree-width
of bounded-degree graphs in Free(M), as the tree-width of a graph is upper-
bounded by a function of its maximum degree and chordality [4].

(3) Excluding large graphs of the form Hi and Li. For a fixed positive
integer k, let Ck denote the class of (Hk, Lk, Hk+1, Lk+1, . . .)-free graphs. These
graphs form a generalization of graphs without long induced paths, for which
many structural results are known (see for instance [3,9,15]). An obvious prop-
erty of connected graphs without long induced paths is that they have small
diameter.1

1 The diameter of a connected graph G is the maximum length of a shortest path
connecting two vertices of G.
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Fig. 3. Breaking a P4-handle

We will show that connected graphs in Ck are not far from having small
diameter. More precisely, we will prove that any connected graph G from Ck

can be transformed into a graph G̃ ∈ Ck+1 of bounded diameter. Informally,
our transformation is inverse to a sequence of edge subdivisions. To describe it
formally, we introduce the notion of P4-handles. A P4-handle in a graph G is
an induced P4 whose two midpoints have degree two in G. We will call a graph
P4-handle-free if it has no P4-handles. Our transformation simply consists of
contracting middle edges of P4-handles as long as possible. (Figure 3 shows one
such contraction.) Clearly, it can be applied to any graph G, and it results in a
P4-handle-free graph G̃. Note that up to isomorphism, G̃ is uniquely defined, and
the graph G can be obtained from G̃ by applying a sequence of edge subdivisions.

We now show that the diameter of P4-handle-free graphs in our class is
bounded.

Lemma 3. Let G ∈ Ck be a connected P4-handle-free graph. Then diam(G) ≤
2k + 18.

Proof. The proof is by contradiction. Assume that G contains two vertices a and
b at distance at least 2k + 19, and let P = (v1, . . . , vs) be a shortest a-b path.
By assumption, P has at least 2k + 20 vertices.

As G has no P4 handles, at least one of v2 and v3 has a neighbor, say x,
outside P . Similarly, at least one of vk+10 and vk+11 has a neighbor y outside
P , and at least one of v2k+18 and v2k+19 has a neighbor z outside P .

Since P is a shortest a-b path, the neighborhood of x on P is contained in
the set {v1, . . . , v5}. Similarly, the neighborhood of y on P is contained in the
set {vk+8, . . . , vk+13}, and the neighborhood of z on P is contained in the set
{v2k+16, . . . , v2k+20}. In particular, this implies that the vertices x, y and z are
distinct. By the minimality of P , the vertices x, y and z are pairwise nonadjacent.
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Let vr be the neighbor of x on P with the largest value of r, and let vl be the
neighbor of z on P with the smallest value of l. To avoid a large graph isomorphic
to an Hi or Li, we conclude without loss of generality that x is adjacent to vr−1
and z is nonadjacent to vl+1. Similarly, let us denote by vR the neighbor of y
on P with the largest value of R, and by vL the neighbor of y on P with the
smallest value of L. Then, it follows that y is nonadjacent to vL+1, and adjacent
to vR−1. However, this implies that R−L ≥ 3, which contradicts the minimality
of P . ��

With this result in mind, it is now easy to prove the following theorem.

Theorem 4. For any positive integers k and Δ, there is an N such that the
tree-width of every (Hk, Lk, Hk+1, Lk+1, . . .)-free graph of maximum degree at
most Δ is at most N .

Proof. It is known (see e.g. [18]) that subdivision of an edge does not change the
tree-width of the graph. Therefore, the tree-width of G̃ equals to that of G, and
hence, to prove the theorem it is enough to show that the tree-width is bounded
in the class Xk,Δ := {G̃ : G ∈ Ck, Δ(G) ≤ Δ}.

It is not difficult to see that Xk,Δ is a subclass of Ck+1, and that vertex degrees
of graphs in Xk,Δ are also bounded by Δ. Since all graphs G̃ are P4-handle-free,
it follows from Lemma 3 that the diameter of connected graphs in Xk,Δ does
not exceed 2k+20. As there are only finitely many connected graphs of bounded
degree and bounded diameter, the tree-width of graphs in Xk,Δ is bounded above
by a constant depending only on k and Δ. ��

(4) Excluding a graph from S, and large graphs of the form Li. We start
with an auxiliary lemma.

Lemma 4. For any positive integers k and Δ, there is an integer ρ = ρ(k, Δ)
such that any connected (Lk, Lk+1, . . .)-free graph G of maximum vertex degree
at most Δ contains an induced triangle-free subgraph with at least |V (G)| − ρ
vertices.

Proof. We first show that for any two induced copies T and T ′ of a triangle in
G, the distance between them does not exceed k. Suppose by contradiction that
a shortest path P joining a triangle T to another triangle T ′ consists of r ≥ k+1
edges. Let us write P = (v0, v1, . . . , vr−1, vr) where v0 ∈ V (T ), vr ∈ V (T ′).

Without loss of generality, we may assume that v0 is the only neighbor of v1
in T , since otherwise we can re-define T to be a triangle induced by v1 together
with any of its two neighbors in T . Similarly, we may assume that vr is the only
neighbor of vr−1 in T ′. But now the two triangles T and T ′ together with the
vertices of P connecting them induce a graph Li with i ≥ k. Contradiction.

To conclude the proof, assume that G contains an induced triangle T , and let
v be a vertex of T . According to the above discussion, the distance from v to a
vertex of any other triangle in G (if any) is at most k. Since G is a connected
graph of maximum degree at most Δ, there is a constant ρ = ρ(k, Δ) bounding
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the number of vertices of G of distance at most k from v. Deletion of all these
vertices leaves an induced subgraph of G which is triangle-free. ��

We also recall the following result from [16].

Lemma 5 ([16]). For a class of graphs X and an integer ρ, let [X ]ρ denote the
class of graphs G such that G − U belongs to X for some subset U ⊆ V (G) of
cardinality at most ρ. If X is a class of graphs of bounded tree-width, then so is
[X ]ρ.

Combining Lemma 4 with Lemma 5 and Theorem 3, we obtain the following
conclusion.

Theorem 5. For any positive integers k and Δ and any graph S ∈ S, there
is an integer N such that the tree-width of every (S, Lk, Lk+1, . . .)-free graph of
maximum degree at most Δ is at most N .

(5) Excluding a graph from T , and large graphs of the form Hi. This
case is similar to the previous one. In particular, the following lemma can be
proved by analogy with Lemma 4.

Lemma 6. For any positive integers k and Δ, there is an integer ρ = ρ(k, Δ)
such that any connected (Hk, Hk+1, . . .)-free graph G of maximum vertex degree
at most Δ contains an induced claw-free subgraph with at least |V (G)|−ρ vertices.

Combining Lemma 6 with Lemma 5 and Theorem 3, we obtain the following
conclusion.

Theorem 6. For any positive integers k and Δ and any graph T ∈ T there is
an integer N such that the tree-width of every (T, Hk, Hk+1, . . .)-free graph of
maximum degree at most Δ is at most N .

The results of this section are summarized in the following theorem.

Theorem 7. Let Δ be a positive integer and let X be a class of M -free graphs
of vertex degree at most Δ. If at least one of the following conditions holds:

(1) there is a k ≥ 3 such that M ⊇ {Ck, Ck+1, . . .}, or
(2) there is a k ≥ 1 such that M ⊇ {Hk, Lk, Hk+1, Lk+1, . . .}, or
(3) M ∩ S �= ∅ and there is a k ≥ 1 such that M ⊇ {Lk, Lk+1, . . .}, or
(4) M ∩ T �= ∅ and there is a k ≥ 1 such that M ⊇ {Hk, Hk+1, . . .}, or
(5) M ∩ S �= ∅ and M ∩ T �= ∅,

then the tree-width of graphs in X is bounded.

Corollary 1. Let Δ be a positive integer and let X be a class of M -free graphs
of vertex degree at most Δ. If at least one of the conditions stated in Theorem 7
holds, then the following problems are solvable in polynomial time for graphs in
X: dominating set, independent dominating set, induced matching.
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Theorem 7 captures many well-known graph classes, once restricted to graphs of
bounded degree. Examples include chordal graphs of bounded degree (condition
(1) with k = 4), chordal bipartite graphs of bounded degree ((1) with k = 5),
distance-hereditary graphs of bounded degree ((1) with k = 5), weakly chordal
graphs of bounded degree ((1) with k = 5), AT-free graphs of bounded degree
((1) with k = 6), and their subclasses co-comparability graphs of bounded degree
and permutation graphs of bounded degree, (bull, fork)-free graphs of bounded
degree ((4), (5)), (claw, net)-free graphs of bounded degree ((4), (5)), and Pk-
free graphs of bounded degree, for any fixed k ((1)–(5)). In all these classes,
boundedness of vertex degrees is a necessary condition for bounded tree-width.

4 Conclusion

In this paper, we presented several results suggesting the idea that polynomial-
time solvability of dominating set, independent dominating set and
induced matching problems in bounded degree graphs is equivalent to bound-
edness of tree-width of those graphs. In particular, we revealed two large areas
containing graph classes where these problems are NP-hard and the tree-width
is unbounded. We also detected several areas where the tree-width is bounded
and hence the problems are polynomial-time solvable. There is still a gap of
unexplored classes of graphs. Closing this gap is a challenging research problem.

Another interesting topic to investigate is to characterize the class of problems
that have a similar relationship with the tree-width in bounded degree graphs.
Two possible candidates for this class are the longest cycle and longest

path problems.
Finally, it would be interesting to identify other classes of graphs where

polynomial-time solvability and boundedness of tree-width behave consistently.
In this respect, a promising direction is given by graphs with bounded expansion
(a common generalization of graphs of bounded degree and minor-closed graph
classes) introduced recently in [20].
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Abstract. The class of 2-interval graphs has been introduced for mod-
elling scheduling and allocation problems, and more recently for specific
bioinformatics problems. Some of those applications imply restrictions
on the 2-interval graphs, and justify the introduction of a hierarchy of
subclasses of 2-interval graphs that generalize line graphs: balanced 2-
interval graphs, unit 2-interval graphs, and (x,x)-interval graphs. We
provide instances that show that all inclusions are strict. We extend the
NP-completeness proof of recognizing 2-interval graphs to the recognition
of balanced 2-interval graphs. Finally we give hints on the complexity of
unit 2-interval graphs recognition, by studying relationships with other
graph classes: proper circular-arc, quasi-line graphs, K1,5-free graphs, . . .

Keywords: 2-interval graphs, graph classes, line graphs, quasi-line graphs,
claw-free graphs, circular interval graphs, bioinformatics, scheduling.

1 2-Interval Graphs and Restrictions

The interval number of a graph, and the classes of k-interval graphs have been in-
troduced as a generalization of the class of interval graphs by McGuigan [McG77]
in the context of scheduling and allocation problems. Recently, bioinformatics
problems have renewed interest in the class of 2-interval graphs (each vertex is
associated to a pair of disjoint intervals and edges denote intersection between
two such pairs). Indeed, a pair of intervals can model two associated tasks in
scheduling [BYHN+06], but also two similar segments of DNA in the context of
DNA comparison [JMT92], or two complementary segments of RNA for RNA
secondary structure prediction and comparison [Via04].

RNA (ribonucleic acid) are polymers of nucleotides linked in a chain through
phosphodiester bonds. Unlike DNA, RNAs are usually single stranded, but
many RNA molecules have secondary structure in which intramolecular loops are
formed by complementary base pairing. RNA secondary structure is generally
divided into helices (contiguous base pairs), and various kinds of loops (unpaired
nucleotides surrounded by helices). The structural stability and function of non-
coding RNA (ncRNA) genes are largely determined by the formation of stable
secondary structures through complementary bases, and hence ncRNA genes
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(a) (b) (c)

Fig. 1. Helices in a RNA secondary structure (a) can be modeled as a set of balanced
2-intervals among all 2-intervals corresponding to complementary and inverted pairs of
letter sequences (b), or as an independent subset in the balanced associated 2-interval
graph (c).

across different species are most similar in the pattern of nucleotide complemen-
tarity rather than in the genomic sequence. This motivates the use of 2-intervals
for modelling RNA secondary structures: each helix of the structure is modeled
by a 2-interval. Moreover, the fact that these 2-intervals are usually required to be
disjoint in the structure naturally suggests the use of 2-interval graphs. Further-
more, aiming at better modelling RNA secondary structures, it was suggested
in [CHLV05] to focus on balanced 2-interval sets (each 2-interval is composed of
two equal length intervals) and their associated intersection graphs referred as
balanced 2-interval graphs. Indeed, helices in RNA secondary structures are most
of the time composed of equal length contiguous base pairs parts. To the best of
our knowledge, nothing is known on the class of balanced 2-interval graphs.

Sharper restrictions have also been introduced in scheduling, where it is pos-
sible to consider tasks which all have the same duration, that is 2-interval whose
intervals have the same length [BYHN+06,Kar05]. This motivates the study of
the classes of unit 2-interval graphs, and (x, x)-interval graphs. In this paper,
we consider these subclasses of interval graphs, and in particular we address the
problem of recognizing them.

A graph G = (V, E) of order n is a 2-interval graph if it is the intersection
graph of a set of n unions of two disjoint intervals on the real line, that is each
vertex corresponds to a union of two disjoint intervals Ik = Ik

l ∪ Ik
r , k ∈ �1, n� (l

for “left” and r for “right”), and there is an edge between Ij and Ik iff Ij∩Ik �= ∅.
Note that for the sake of simplicity we use the same letter to denote a vertex
and its corresponding 2-interval. A set of 2-intervals corresponding to a graph G
is called a realization of G. The set of all intervals,

⋃n
k=1{Ik

l , Ik
r }, is called the

ground set of G (or the ground set of {I1, . . . , In}).
The class of 2-interval graphs is a generalization of interval graphs, and also

contains all circular-arc graphs (intersection graphs of arcs of a circle), outer-
planar graphs (have a planar embedding with all vertices around one of the
faces [KW99]), cubic graphs (maximum degree 3 [GW80]), and line graphs (in-
tersection graphs of edges of a graph).

Unfortunately, most classical graph combinatorial problems turn out to be
NP-complete for 2-interval graphs: recognition [WS84], maximum independent
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Fig. 2. Graph classes related to 2-interval graphs and its restrictions. A class pointing
towards another strictly contains it, and the dashed lines mean that there is no inclusion
relationship between the two. Dark classes correspond to classes not yet present in the
ISGCI Database [BLS+].

set [BNR96,Via01], coloration [Via01], . . . Surprisingly enough, the complexity
of the maximum clique problem for 2-interval graphs is still open (although it
has been recently proven to be NP-complete for 3-interval graphs [BHLR07]).

For practical application, restricted 2-interval graphs are needed. A 2-interval
graph is balanced if it has a 2-interval realization in which each 2-interval is
composed of two intervals of the same length [CHLV05], unit if it has a 2-
interval realization in which all intervals of the ground set have length 1 [BFV04],
and is called a (x, x)-interval graph if it has a 2-interval realization in which
all intervals of the ground set are open, have integer endpoints, and length
x [BYHN+06,Kar05]. In the following sections, we will study those restrictions of
2-interval graphs, and their position in the hierarchy of graph classes illustrated
in Figure 2.

Note that all (x, x)-interval graphs are unit 2-interval graphs, and that all
unit 2-interval graphs are balanced 2-interval graphs. We can also notice that
(1, 1)-interval graphs are exactly line graphs: each interval of length 1 of the
ground set can be considered as the vertex of a root graph and each 2-interval as
an edge in the root graph. This implies for example that the coloration problem
is also NP-complete for (2, 2)-interval graphs and wider classes of graphs. It is
also known that the complexity of the maximum independent set problem is NP-
complete on (2, 2)-interval graphs [BNR96]. Recognition of (1, 2)-union graphs, a
related class (restriction of multitrack interval graphs), was also recently proven
NP-complete [HK06].
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(a) (b) (c)

Fig. 3. The complete bipartite graph K5,3 (a,b) has a balanced 2-interval realization
(c): vertices of S5 are associated to balanced 2-intervals of length 7, those of S3 to
balanced 2-intervals of length 11. Any realization of this graph is contiguous, i.e., the
union of all 2-intervals is an interval.

2 Useful Gadgets for 2-Interval Graphs and Restrictions

For proving hardness of recognizing 2-interval graphs, West and Shmoys consid-
ered in [WS84] the complete bipartite graph K5,3 as a useful 2-interval gadget.
Indeed, all its realizations are contiguous: for any realization, the union of all
intervals in its ground set is an interval. Thus, by putting edges between some
vertices of a K5,3 and another vertex v, we can force one interval of the 2-interval
v (or just one extremity of this interval) to be blocked inside the realization of
K5,3. It is easy to see that K5,3 has a balanced 2-interval realization, for example
the one in Figure 3.

However, K5,3 is not a unit 2-interval graph. Indeed, each 2-interval I = Il∪Ir

corresponding to a degree 5 vertex intersect 5 disjoint 2-intervals, and hence one
of Il or Ir intersect at least 3 intervals, which is impossible for unit intervals.
Therefore, we introduce the new gadget K4,4 − e which is a (2, 2)-interval graph
with only contiguous realizations (the proof is omitted).

3 Balanced 2-Interval Graphs

We show in this section that the class of balanced 2-interval graphs is strictly in-
cluded in the class of 2-interval graphs, and strictly contains circular-arc graphs.
Moreover, we prove that recognizing balanced 2-interval graphs is as hard as
recognizing (general) 2-interval graphs.

Property 1. The class of balanced 2-interval graphs is strictly included in the
class of 2-interval graphs.

(a) (b) (c)

Fig. 4. The graph K4,4 − e (a), a nicer representation (b), and a 2-interval realization
with open intervals of length 2 (c)
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(a)

(b)

Fig. 5. An example of unbalanced 2-interval graph (a) : any realization groups intervals
of the seven K5,3 in a block, and the chain of seven blocks creates six “holes” between
them, which make it impossible to balance the lengths of the three 2-intervals I1, I2,
and I3

Proof. We build a 2-interval graph that has no balanced 2-interval realization.
Let’s consider a chain of gadgets K5,3 (introduced in previous section) to which
we add three vertices I1, I2, and I3 as illustrated in Figure 5. In any realization,
the presence of holes showed by crosses in the Figure gives the following in-
equalities for any realization: l(Il

2) < l(Il
1), l(Il

3) < l(Ir
2), and l(Ir

1) < l(Ir
3)

(or if the realization of the chain of K5,3 appears in the symmetrical order:
l(Il

1) < l(Il
3), l(Ir

3) < l(Il
2), and l(Ir

2) < l(Ir
1)). If this realization was bal-

anced, then we would have l(Il
1) = l(Ir

1) < l(Ir
3) = l(Il

3) < l(Ir
2) = l(Il

2) (or
the symetrical equality): impossible! So this graph has no balanced 2-interval
realization although it has a 2-interval generalization.

Theorem 1. Recognizing balanced 2-interval graphs is NP-complete.

Proof. We just adapt the proof of West and Shmoys [WS84,GW95]: reduce the
problem of Hamiltonian cycle in a 3-regular triangle-free graph to balanced 2-
interval recognition.

Let G = (V, E) be a 3-regular triangle-free graph. We build a graph G′ which
has a 2-interval realization (a special one, very specific, called H-representation
and which we prove to be balanced) iff G has a Hamiltonian cycle. The construc-
tion of G′, illustrated in Figure 6(a) is almost identical to the one by West and
Shmoys, so we just prove that G′ has a balanced realization, shown in Figure 6
(b), by computing lengths for each interval to ensure it. All K5,3 have a balanced
realization as shown in section 1 of total length 79, in particular H3. We can
thus affect length 83 to the intervals of v0. The intervals of the other vi can have
length 3, and their M(vi) length 79, so through the computation illustrated in
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Fig. 6. There is a balanced 2-interval of G′ (which has been dilated in the drawing
to remain readable) iff there is an H-representation (that is a realization where the
left intervals of all 2-intervals are contiguous) for its induced subgraph G iff there is a
Hamiltonian cycle in G

Figure 6, intervals of z can have length 80 + 82 + 2(n − 1) + 3, that is 163 + 2n.
We dilate H1 until a hole between two consecutive intervals of its S3 can contain
an interval of z, that is until the hole has length 165+2n : so after this dilating,
H1 has length 79(165 + 2n). Finally if G has a Hamiltonian cycle, then we have
found a balanced 2-interval realization of G of total length 13, 273 + 241n.

It is known that circular-arc graphs are 2-interval graphs, they are also balanced
2-interval.

Property 2. The class of circular-arc graphs is strictly included in the class of
balanced 2-interval graphs.

Proof. The transformation is simple: if we have a circular-arc representation of
a graph G = (V, E), then we choose some point P of the circle. We partition V
in V1 ∪ V2, where P intersects all the arcs corresponding to vertices of V1 and
none of the arcs of the vertices of V2. Then we cut the circle at point P to map
it to a line segment: every arc of V2 becomes an interval, and every arc of V1
becomes a 2-interval. To obtain a balanced realization we just cut in half the
intervals of V2 to obtain two intervals of equal length for each. And for each
2-interval [g(Il), d(Il)] ∪ [g(Ir), d(Ir)] of V1, as both intervals are located on one
of the extremities of the realization, we can increase the length of the shortest so
that it reaches the length of the longest without changing intersections with the
other intervals. The inclusion is strict because K2,3 is a balanced 2-interval graph
(as a subgraph of K5,3 for example) but is not a circular-arc graph (we can find
two C4 in K2,3, and only one can be realized with a circular-arc representation).
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4 Unit 2-Interval and (x,x)-Interval Graphs

Property 3. Let x ∈ N, x ≥ 2. The class of (x, x)-interval graphs is strictly
included in the class of (x + 1, x + 1)-interval graphs.

Proof. We first prove that an interval graph with a representation where all
intervals have length k (and integer open bounds) has a representation where all
intervals have length k + 1.

We use the following algorithm. Let S be initialized as the set of all intervals
of length k, and let T be initially the empty set. As long as S is not empty,
let I = [a, b] be the left-most interval of S, remove from S each interval [α, β]
such that α < b (including I), add [α, β + 1] to T , and translate by +1 all the
remaining intervals in S. When S is empty, the intersection graph of T , where all
intervals have length k + 1 is the same as the intersection graph for the original
S.

We also build for each x ≥ 2 a (x+1, x+1)-interval graph which is not a (x, x)-
interval graph. We consider the bipartite graph K2x and a perfect matching
{(vi, v

′
i), i ∈ �1, x�}. We call K ′

x the graph obtained from K2x with the following
transformations, illustrated in Figure 7(a): remove edges (vi, v

′
i) of the perfect

matching, add four graphs K4,4 − e called X1, X2, X3, X4 (for each Xi, we call
vi

l and vi
r the vertices of degree 3), link v2

r and v3
l , link all vi to v1

r and v4
l , link all

v′i to v2
l and v3

r , and finally add a vertex a (resp. b) linked to all vi, v′i, and to two
adjacent vertices of X1 (resp. X4) of degree 4. We illustrate in Figure 7(b) that
K ′

x has a realization with intervals of length x + 1. We can prove by induction
on x that K ′

x has no realization with intervals of length x: it is rather technical,
so we just give the idea. Any realization of K ′

x forces the block X2 to share an
extremity with the block X3, so each 2-interval v′i has one interval intersecting
the other extremity of X2, and the other intersecting the other extremity of X3.
Then constraints on the position of vertices vi force their intervals to appear as
two “stairways” as shown in Figure 7(b). So v1

r must contain x extremities of
intervals which have to be different, so it must have length x + 1.

The complexity of recognizing unit 2-interval graphs and (x, x)-interval graphs
remains open, however the following shows a relationship between those com-
plexities.

Lemma 1. {unit 2-interval graphs} =
⋃

x∈N∗
{(x, x)-interval graphs}.

Proof. The ⊃ part is trivial. To prove ⊂, let G = (V, E) be a unit 2-interval
graph. Then it has a realization with |V | = n 2-intervals, that is 2n intervals
of the ground set. So we consider the interval graph of the ground set, which
is a unit interval graph. There is a linear time algorithm based on breadth-first
search to compute a realization of such a graph where interval endpoints are
rational, with denominator 2n [CKN+95]. So by dilating by a factor 2n such a
realization, we obtain a realization of G where intervals of the ground set have
length 2n.
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(a)

(b)

Fig. 7. The graph K′
4 (a) is (5,5)-interval but not (4,4)-interval

Theorem 2. If recognizing (x, x)-interval graphs is polynomial for any integer
x then recognizing unit 2-interval graphs is polynomial.

5 Investigating the Complexity of Unit 2-Interval Graphs

In this section we show that all proper circular-arc graphs (circular-arc graphs
such that no arc is included in another in the representation) are unit 2-interval
graphs, and we study a class of graphs which generalizes quasi-line graphs and
contains unit 2-interval graphs.

Property 4. The class of proper circular-arc graphs is strictly included in the
class of unit 2-interval graphs.

Proof. As in the proof of Property 2, we cut the circle of the representation
of a proper circular-arc graph G to get a proper interval realization, which we
transform into a unit interval realization [Rob69], which provides a unit 2-interval
representation of G. To complete the proof, we notice that the domino (two cycles
C4 having an edge in common) is a unit 2-interval graph but not a circular-arc
graph.

Quasi-line graphs are those graphs whose vertices are bisimplicial, i.e., the
closed neighborhood of each vertex can be partitioned into two cliques. They
have been introduced as a generalization of line graphs and a useful subclass
of claw-free graphs [Ben81,FFR97,CS05,KR07]. Following the example of quasi-
line graphs that generalize line graphs, we introduce here a new class of graphs for
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generalizing unit 2-interval graphs. Let k ∈ N
∗. A graph G = (V, E) is all-k-

simplicial if the neighborhood of each vertex v ∈ V can be partitioned into at
most k cliques (note that quasi-line graphs are exactly all-2-simplicial graphs).

Property 5. The class of unit 2-interval graphs is strictly included in the class of
all-4-simplicial graphs.

Proof. The inclusion is trivial. We show that it is strict. Consider the following
graph which is all-4-simplicial but not unit 2-interval: start with the cycle C4,
call its vertices vi, i ∈ �1, 4�, add four K4,4 − e gadgets called Xi, and for each i
we connect the vertex vi to two connected vertices of degree 4 in Xi. This graph
is certainly all-4-simplicial. But if we try to build a 2-interval realization of this
graph, then each of the 2-intervals vk has an interval trapped into the block
Xk. So each 2-interval vk has only one interval to realize the intersections with
the other vi: this is impossible as we have to realize a C4 which has no interval
representation.

Property 6. The class of claw-free graphs is not included in the class of all-4-
simplicial graphs.

Proof. The Kneser Graph KG(7, 2) is triangle-free, not 4-colorable [Lov78]. The
graph obtained by adding an isolated vertex v and then taking the complement
graph, i.e., KG(7, 2) 
 {v}, is claw-free as KG(7, 2) is triangle-free. And if it was
all-4-simplicial, then the neighborhood of v in KG(7, 2) 
 {v}, that is KG(7, 2),
would be a union of at most four cliques, so KG(7, 2) would be 4-colorable:
impossible so this graph is claw-free but not all-4-simplicial.

Property 7. The class of all-k-simplicial graphs is strictly included in the class
of K1,k+1-free graphs.

Proof. If a graph G contains K1,k+1, then it has a vertex with k+1 independent
neighbors, and hence G is not all-k-simplicial. The wheel W2k+1 is a simple
example of K1,k+1-free graph in which the center can not have its neighborhood
(a C2k+1) partitioned into k cliques or less.

Unfortunately, all-k-simplicial graphs do not have a nice structure which could
help unit 2-interval graph recognition.

Theorem 3. Recognizing all-k-simplicial graphs is NP-complete for k ≥ 3.

Proof. We reduce from Graph k-colorability, which is known to be NP-
complete for k ≥ 3 [Kar72]. Let G = (V, E) be a graph, and let G′ be the com-
plement graph of G to which we add a universal vertex v. We claim that G is k-
colorable iff G′ is all-k-simplicial. If G is k-colorable, then the non-neighborhood
of any vertex in G is k-colorable, so the neighborhood of any vertex in G is a
union of at most k cliques. And the neighborhood of v is also a union of at most
k cliques, so G′ is all-k-simplicial. Conversely, if G′ is all-k-simplicial, then in
particular the neighborhood of v is a union of at most k cliques. Let’s partition
it into k vertex-disjoint cliques X1, . . . , Xk. Then, coloring G such that two ver-
tices have the same color iff they are in the same Xi leads to a valid k-coloring
of G.
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6 Conclusion

Motivated by practical applications in scheduling and computational biology, we
focused in this paper on balanced 2-interval graphs and unit 2-intervals graphs.
Also, we introduced two natural new classes: (x, x)-interval graphs and all-k-
simplicial graphs.

We mention here some directions for future works. First, the complexity of
recognizing unit 2-interval graphs and (x, x)-interval graphs remains open. Sec-
ond, the relationships between quasi-line graphs and subclasses of balanced 2-
intervals graphs still have to be investigated. Last, since most problems remain
NP-hard for balanced 2-interval graphs, there is a natural interest in investigat-
ing the complexity and approximation of classical optimization problems on unit
2-interval graphs and (x, x)-interval graphs.
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Abstract. Graph complexity measures like tree-width, clique-width,
NLC-width and rank-width are important because they yield Fixed Para-
meter Tractable algorithms. Rank-width is based on ranks of adjacency
matrices of graphs over GF (2). We propose here algebraic operations
on graphs that characterize rank-width. For algorithmic purposes, it is
important to represent graphs by balanced terms. We give a unique the-
orem that generalizes several “balancing theorems” for tree-width and
clique-width. New results are obtained for rank-width and a variant of
clique-width, called m-clique-width.

1 Introduction

Graph complexity measures like tree-width [17], clique-width [7], NLC-width [18]
and rank-width [16] are important parameters for the construction of polyno-
mial algorithms. Every graph property expressible by a formula of ms (Monadic
Second-Order) logic has a Fixed Parameter Linear algorithm if tree-width is
taken as parameter and a Fixed Parameter Cubic algorithm if clique-width
(equivalently rank-width) is taken as parameter. These results are proved in
the books by Downey and Fellows [11] and by Flum and Grohe [12] for tree-
width, by Courcelle and al. [6] with help of results by Oum and Seymour [15,16]
for rank-width and clique-width.

Clique-width and rank-width are equivalent in the sense that the same classes
of undirected graphs have bounded clique-width and bounded rank-width.
Clique-width has the advantage of having a definition in terms of very simple
graph operations. Furthermore this definition is the basis of the construction of
algorithms for checking ms graph properties in linear time in the size of the alge-
braic expressions defining the input graphs. Rank-width has the advantage of a
good behavior with respect to vertex-minor inclusion, so that the class of graphs
of rank-width at most k is characterized by finitely many excluded vertex-minors.
Furthermore, the cubic-time algorithm that constructs for a given graph an al-
gebraic expression of clique-width at most 23k − 1 if the graph has clique-width
at most k, is based on the decomposition underlying rank-width.
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In this article we propose algebraic operations on graphs that characterize
rank-width as follows:

a graph G has rank-width at most k if and only if (iff for short) it is the
value of a term in T (Rk, Ck)

where Rk is a finite set of graph operations, Ck a finite set of constants, both
depending on k.

In a few words, the operations are based on coloring vertices by sets of colors
⊆ [k] := {1, 2, . . . , k}, like in the variant of clique-width called m-clique-width
(see definitions of Sect. 2 and [7,8]), but vertex colors are manipulated by linear
transformations on the GF (2) vector space {0, 1}k rather than with set union
over subsets of {1, . . . , k}. Furthermore, edges are created between two disjoint
graphs by means of bilinear forms, taking the vectors of colors as arguments. It
is thus somewhat natural that they can generate (exactly) the set of graphs of
rank-width at most k since rank-width is based on ranks of GF (2) matrices.

The operation that replaces anywhere a vertex color a by the color b, and the
one that adds edges between any vertex colored by a and any vertex colored by b
are typical examples of quantifier-free transformations. Quantifier-free transfor-
mations modify logical structures by redefining certain relations by quantifier-
free formulas (see [10,3] for graph algebras).

For algorithmic purposes, it is useful and sometimes crucial to represent
graphs by a-balanced binary terms, i.e, trees of height at most a(log(n)+1) where
n is the number of nodes and a is a constant. This is the case for instance, of the
labeling schemes considered in [9,8]. Another practical use of balanced terms is
the design of parallel algorithms. This is considered for example by Bodlaender
to design parallel algorithms to construct minimum-width tree-decompositions
of graphs or to solve some np-complete problems [1,2].

Therefore it is quite natural to ask whether, every graph of “width” k admits
an a-balanced binary “decomposition” of width f(k) for some fixed function f .
It is known that every graph of tree-width k admits a 2-balanced binary tree-
decomposition of width at most 3k + 2 [1] and every graph of m-clique-width
k admits a 6-balanced m-clique-width expression of width at most 2k [8]. We
investigate the problem of a unified framework. We prove a general theorem
covering several particular cases saying that every term in T (F, C) representing
a binary structure is equivalent to a 3-balanced one in T (F ′, C′), where (F ′, C′)
is a binary signature and (F, C) ⊆ (F ′, C′). For that we introduce a kind of
generalization of the notion of associative and commutative operation, called
flexibility.

The main results of this article are: an algebraic characterization of rank-
width, a unified framework for “balancing theorems” with application to rank-
width, clique-width, NLC-width and m-clique-width.

2 Notations and Definitions

We denote by [k] the set {1, . . . , k}. Graphs are finite, simple, loop-free, undi-
rected unless otherwise specified. A graph G is defined as < VG, edgG > where
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edgG ⊆ VG × VG is the symmetric adjacency relation. Without loss of gener-
ality we assume that VG is always linearly ordered. This order will be used to
represent edgG by a square matrix over GF (2).

A sub-cubic tree is a tree such that the degree of each node is at most 3. All
logarithms are in base 2.

Let t be a rooted tree and a ∈ R. We say that t is a-balanced if the height of
t, i.e., the maximal distance of a leaf to the root, is at most a(log(n) + 1) where
n is the number of nodes of t.1

Let F be a set of binary functions and C be a set of constants. We denote by
T (F, C) the set of well-formed terms built with F ∪C. They will be discussed as
colored directed and rooted ordered trees in the usual way. A context is a term
in T (F, C ∪{u}) having a single occurrence of the variable u (a nullary symbol).
We denote by Cxt(F, C) the set of contexts. We denote by Id the particular
context u. Let s be a context and t be a term or a context, we denote by s[t/u]
the result of the substitution of t for u in s.

We define two binary operations on terms and contexts: s ◦ s′ = s[s′/u],
belonging to Cxt(F, C) for s, s′ in Cxt(F, C) and s • t = s[t/u], belonging to
T (F, C) for s in Cxt(F, C) and t in T (F, C).

We now recall the definition of rank-width, a graph complexity measure intro-
duced by Oum and Seymour in their investigations on recognition algorithms for
graphs of bounded clique-width [16]. For an (R, C)-matrix M = (mij | i ∈ R, j ∈
C) over a field F , if X ⊆ R, Y ⊆ C, we let M [X, Y ] denote the sub-matrix
(mij | i ∈ X, j ∈ Y ). For a graph G, we let AG be its adjacency (VG, VG)-matrix
over GF (2).

Cut-rank Functions. Let G =< VG, edgG > be a graph. We define the cut-
rank function ρG of G by letting ρG(X) = rk(AG[X, VG\X ]) for X ⊆ VG, where
rk is the matrix rank function. We let ρG(∅) = ρG(VG) = 0.

Rank-width. A layout of a graph G is a pair (T, f) of a sub-cubic tree T and
a bijective function f : VG → {t | t is a node of degree 1 in T }.

For an edge e of T , the connected components of T \e induce a bipartition
of the set of nodes of degree 1 of T , hence a bipartition (Xe, Ye) of the set of
vertices of G. The width of an edge e of a layout (T, f) is ρG(Xe) = ρG(Ye).
The width of a layout (T, f) is the maximum width over all edges of T . The
rank-width of G, denoted by rwd(G), is the minimum width over all layouts of
G.

The notions of rank-width and of clique-width are equivalent in the sense that
a class of graphs has bounded rank-width iff it has bounded clique-width. Oum
has given in [15] an O(n3)-time approximation algorithm that reports that a
graph has rank-width at least k +1 or outputs a layout of width at most 3k − 1.
This has been improved in [13] which gives a cubic-time algorithm that outputs
a layout of width k if the graph has rank-width k. But if we want to solve prob-
lems definable in ms on graphs of bounded rank-width, we need to transform the
layout into a clique-width expression (see [16]) and, after that, to use techniques

1 This definition is meaningful in the case n = 1.
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by Courcelle and al. [6]. In this paper, we propose an algebraic characterization
of rank-width, which will allow us to solve ms definable problems without trans-
forming the layout into a clique-width expression. This is important because the
transformation of a layout of width k may give a (2k+1 −1)-clique-width expres-
sion. The exponent 2k+1 is part of the large size of constants in FPT algorithms.

Proposition 1. [16,8,7,14] For every undirected graph G,

(1) rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1 (3) mcwd(G) ≤ twd(G) + 3

(2) mcwd(G) ≤ cwd(G) ≤ 2mcwd(G)+1 (4) rwd(G) ≤ 4 × twd(G) + 2 .

Here twd, cwd and mcwd denote respectively tree-width [17], clique-width [7]
and m-clique-width (we recall below the definition of m-clique-width [8]).

M-clique-width. Let L be a finite set of colors. A multi-colored graph is a
triple < VG, edgG, δG > consisting of a graph < VG, edgG > and a mapping δG

associating with each x in VG the set of its colors, a subset of L. A vertex may
have zero, one or several colors.

The following constants will be used: for A ⊆ L we let A be a constant
denoting the graph G with single vertex x and δG(x) = A. We write A(x) if we
need to specify the vertex x. The following binary operations will be used: for
R ⊆ L × L, for recolorings g, h : L → 2L and for multi-colored graphs G and H
we define K = G ⊗R,g,h H if G and H are disjoint (otherwise we replace H by
a disjoint copy) where

VK = VG ∪ VH ,

edgK = edgG ∪ edgH ∪ {xy | x ∈ VG, y ∈ VH , R ∩ (δG(x) × δH(y)) �= ∅},

δK(x) = (g ◦ δG)(x) = {a | a ∈ g(b), b ∈ δG(x)} if x ∈ VG,

δK(x) = (h ◦ δH)(x) if x ∈ VH .

As in the operations by Wanke [18] these operations add edges between two
disjoint graphs, that are the two arguments of (many) binary operations. This is
a difference with clique-width where a single binary operation is used, and ηi,j

applied to G ⊕ H may add edges to G and to H .
We let FL be the set of all binary operations ⊗R,g,h and CL be the set of

constants {A | A ⊆ L}. Every term t in T (FL, CL) denotes a multi-colored
graph val(t) with colors in L, and every multi-colored graph G is the value of
such a term for large enough L. To simplify the notation, we will write Fk and
Ck if L = [k]. We let mcwd(G) be the minimum k such that G is the value of a
term t ∈ T (Fk, Ck) and call this number the m-clique-width of G.

3 Vectorial Colorings and Rank-Width

Handling multiple colorings of vertices with k colors is clearly the same thing
as handling colorings with colors in {0, 1}k. Let k ≥ 1 and B = {0, 1}. A B

k-
coloring of a graph G is a mapping γ : VG → B

k with no constraint on the
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values of γ for neighbor vertices. We consider that x ∈ VG has color i (among
others) iff γ(x)[i] (the i-th component of γ(x)) is 1. A B

k-colored graph is a
triple G =< VG, edgG, γG > where γG is a B

k-coloring of < VG, edgG >. The
empty B

k-colored graph is denoted by ∅k. (This constant can be eliminated from
expressions by Remark 1). We define some operations on these graphs.

A mapping h : B
k → B

� is linear if for some (k × �)-matrix and all row-
vectors u ∈ B

k we have h(u) = u · N . We say that h is described by N . A
mapping f : B

k × B
� → B is said bilinear if for some (k × �)-matrix and all

row-vectors u ∈ B
k, v ∈ B

� we have f(u, v) = u · M · vT where vT indicates
transposition of the row-vector v(we say that f is described by M).

With a B
k-colored graph G =< VG, edgG, γG > we associate the (VG, VG)-

adjacency (symmetric) matrix AG and the (VG, [k])-color matrix ΓG, the row
vectors of which are the vectors γG(x) in B

k for x in VG. We define the color-
rank of G as the rank of ΓG and we denote it by crk(G). Clearly, crk (G) ≤ k if
G is B

k-colored.2,3

Linear Recolorings. For h : B
k → B

� a linear mapping and G a B
k-colored

graph, we let Recolh(G) = H = < VG, edgG, γH > where γH = h ◦ γG. Hence
ΓH = ΓG · N and H is a B

�-colored graph. If h and h′ are linear recolorings,
described respectively by N and N ′, then h ◦ h′ is linear and is described by
N ′ · N .

Bilinear Product of Graphs. Let f : B
k ×B

� → {0, 1} be a bilinear mapping,
let g : B

k → B
m and h : B

� → B
m be arbitrary linear mappings. For G, B

k-
colored and H , B

�-colored, we let K = G ⊗f,g,h H be defined as follows, where,
as usual, we assume VG ∩ VH = ∅:

VK = VG ∪ VH ,

edgK = edgG ∪ edgH ∪ {xy | x ∈ VG, y ∈ VH , γG(x) · M · (γH(y))T = 1},

γK(x) = γG(x) · N if x ∈ VG, γK(x) = γH(x) · P if x ∈ VH ,

where f, g, h are described respectively by M, N, P . Hence K is a B
m-colored

graph. We order the graph K = G ⊗f,g,h H by preserving the orderings of VG

and VH and letting x < y for x ∈ VG and y ∈ VH . We will use the notation
⊗M,N,P instead of ⊗f,g,h.

Constants. We will use 1 to denote the graph with a single vertex with its
B

1-coloring by (1). In order to avoid the use of recolorings, and to deal only
with constants and binary operations, we will also use constants for the graphs
Recolh(1) where h ranges over linear recolorings defined by 1-row matrices N =
u ∈ B

k. Such constants will be denoted by u. We use Ck to denote the set of
constants u for u ∈ B

�, � ≤ k.

2 The color-rank of G should not be confused with its rank. All ranks are relative to
GF (2).

3 A graph G =< VG, edgG > is made canonically into a B
k-colored graph for each k,

with γG(x) = (0, . . . , 0) for each x.
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Remark 1. We have

where MT denotes the transposition of the matrix M . We let Rn be the set of
linear recolorings and bilinear products. We denote by val(t) the graph defined
by a term t ∈ T (Rn, Cn). This graph is the value of the term in the corresponding
algebra. We can assume with Remark 1 that a term t in T (Rn, Cn) is written
with the binary operations ⊗M,N,P and the constants u where u ∈ B

1 ∪ . . .∪B
n.

Proposition 2. 1. The operations RecolN are quantifier-free operations.
2. The operations ⊗M,N,P are expressible in terms of ⊕ and quantifier-free

operations.

Corollary 1. For each n, every ms graph property of a graph G can be decided
in time O(|t|), if G is the value of a given term t ∈ T (Rn, Cn).

Theorem 1. A graph G has rank-width at most n iff it is the value of a term
in T (Rn, Cn).

For the “If” direction, we let G be defined by a term t in T (Rn, Cn) (t has its
root colored by a binary operation ⊗M,N,P ). We take the syntactic tree of t as a
layout of G. It is sufficient to prove the claim below to prove that the rank-width
of this layout is at most n.

Claim 2. ([4]) If t = c • t′, t′ ∈ T (Rn, Cn), c ∈ Cxt(Rn, Cn) − {Id}, G =
val(t), H = val(t′) then we have: AG[VH , VG−VH ] = ΓH ·B and ΓG[VH ] = ΓH ·C
for some matrices B and C, and, rk(AG[VH , VG − VH ]) ≤ n.

For the converse, we prove some technical lemmas. We write G = H ⊗M K
instead of H ⊗M,N,P K if we do not care about the coloring of G but only of its
vertices and edges.

Lemma 1. ([4]) Let G be a graph with a bipartition (V1, V2) of VG. Let m =
rk(AG[V1, V2]). Then G = H ⊗M K where M is a nonsingular (m × m)-matrix,
for some B

m-colorings H and K of G[V1] and G[V2] respectively.

Proposition 3. ([4]) Assume G = H ⊗A K with A of dimension p × q of rank
k. Let M be a (k × k)-sub-matrix of rank k of A. Then we have N of dimension
p × k, P of dimension q × k such that A = N · M · PT and G = RecolN(H) ⊗M

RecolP (K).

Lemma 2. ([4]) Let G be a graph, let H, K, L be induced subgraphs such that
(VH , VK , VL) is a 3-partition of VG, with each component not empty. Let h =
ρG(VH), k = ρG(VK), � = ρG(VL). There exist matrices of appropriate dimen-
sions such that

G = (H ⊗M,N1,N2 K) ⊗P L.

We can thus prove the following proposition (the “only if” direction of Theorem 1).

Proposition 4. ([4]) Every graph of rank-width at most n is the value of a term
in T (Rn, Cn).

G ⊗M,N,P H = H ⊗MT ,P,N G, RecolQ(G) ⊗M,N,P RecolQ′(H) = G ⊗QMQ′T ,QN,Q′P H,

G ⊗M,N,P ∅k = RecolN(G), RecolQ(G ⊗M,N,P H) = G ⊗M,NQ,PQ H .
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4 A General Framework for Establishing Balancing
Theorems

It is known that every graph of tree-width k has a 2-balanced binary tree-
decomposition of width at most 3k + 2 [1] and every graph of m-clique-width
k has a 6-balanced m-clique-width expression of width at most 2k [8]. We will
propose a general framework for establishing balancing theorems. This will allow
us to prove similar theorems for rank-width, clique-width and NLC-width. Our
general framework combines two ideas.

The first idea, coming from [9] consists in introducing binary operations ◦ and
• on terms and contexts representing respectively the composition of the unary
functions associated with two contexts and the evaluation of such a function for
an argument defined by a term. We use a result of [9] showing that every term t in
T (F, C) can be replaced by an equivalent 3-balanced special term tb written with ◦,
• and the constant Id (the trivial context defining the identity). This construction
makes no assumption on the algebraic properties of the signature (F, C).

The second idea introduces a kind of generalization of the notion of an asso-
ciative and commutative operation. It concerns a subsignature (F, C) of (F ′, C′).
Roughly speaking if f in F is not associative, hence if we do not have f(x, f(y, z))
= f(f(x, y), z) for f ∈ F then we require that f(x, f(y, z)) = f ′(f(x, y), z) for
some f ′ ∈ F ′. We say that (F ′, C′) is (F, C)-flexible if this condition and similar
ones hold. This condition makes it possible to eliminate from a term written
with F , C, ◦, • and Id the operations ◦, • and the constant Id and somehow,
to express them in terms of operations of F ′.

The idea is to associate with a context c ∈ Cxt(F, C) an object mc denoted
by a term c̃ in T (F ′, C′) and a function f c ∈ F ′ such that c • t is equivalent to
f c(c̃, t). For two contexts c and c′ we have (by the condition of flexibility) an
operation f c,c′

in F ′ such that c̃ ◦ c′ is equivalent to f c,c′
(c̃, ˜c′). It follows that a

special term t over F , C can be transformed into an equivalent term in T (F ′, C′)
of no larger height.

By combining the two constructions, we can transform a term t ∈ T (F, C)
into an equivalent 3-balanced term in T (F ′, C′).

In our applications to graph operations we will apply this to a signature (F, C)
using k colors (e.g. (Rk, Ck) corresponding to rank-width at most k) and prove
that some finite (F ′, C′) ⊇ (F, C) is (F, C)-flexible. This technique also applies
to branch-width and tree-width [5].

Let S be a countable set whose elements are called sorts. A binary S-signature
is a pair (F, C) where F is a set of binary function symbols, each of them having
a type s1 × s2 → s where s1, s2, s ∈ S, and C is a set of nullary symbols, each of
them having a type s in S. A nullary symbol is called a constant. We say that
a binary T -signature (F, C) is a sub-signature of (F ′, C′) if T ⊆ S, F ⊆ F ′,
C ⊆ C′ and the types of the elements of F and C are the same for (F ′, C′) and
for (F, C). Let σ : F ∪ C → S where σ(f) = s if f is a constant of type s or a
binary function of type s1 × s2 → s. We define the type of a term t ∈ T (F, C)
as σ(rt), where rt is its first symbol (the one at the root of its syntactic tree).
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Special Terms. We let S = T (F ∪ {◦, •}, C ∪ {Id}). We let Sc and St be the
least subsets of S such that:

St := Sc • St ∪ f(St, St) ∪ b

Sc := Sc ◦ Sc ∪ f(St, Sc) ∪ f(Sc, St) ∪ f(St, Id) ∪ f(Id, St)

with rules for each f in F , each b in C. We denote them by SPEt(F, C) and
SPEc(F, C) if we need to specify F and C. Note that Id /∈ St∪Sc. The notions of
context and the operations ◦ and • extend in presence of sorts. We have actually
several operations ◦, • and several constants Id depending on sorts, but we will
overlook this technical point.

For terms t in SPEt(F, C) ∪ SPEc(F, C) we denote by |t|FC the number of
occurrences of symbols from F ∪ C, by |t|0 the number of occurrences of ◦ and
•, and, by |t|Id the number of occurrences of Id.

Every term t in SPEt(F, C) evaluates into a term Eval(t) in T (F, C) and
every term c in SPEc(F, C) evaluates into a context Eval(c) in Cxt(F, C)−{Id}.

A more careful proof than the one of [9, Theorem 1] gives the following result.

Theorem 3. ([4]) For every term t in T (F, C) − C one can construct a term
tb in SPEt(F, C) such that |tb|FC = |t|FC = |t|, Eval(tb) = t and ht(tb) ≤
3 log(|t| − 1). This term can be constructed in time O(n log(n)) if n = |t|.

Comb-term. Let Xn+1 = {x1, . . . , xn+1}. A comb-term is a term in T (F, Xn+1)
of the form q = f1(x1, f2(x2, . . . , fn(xn, xn+1)) . . .). It contains no constant. We
denote it also by q(x1, . . . , xn, xn+1) in order to specify the list of variables, in
the order in which they occur.

Commutativity. A binary S-signature (F, C) is commutative with respect to
a class of algebras C (that will be implicitly assumed in most cases) if for every
f ∈ F there exists a function f̃ in F such that

f̃M (x, y) = fM (y, x) (1)

for all M ∈ C , all x, y ∈ DM .

Comb-decomposition. The comb-decomposition of a term t ∈ T (F, C) − C is
the unique writing of t as q(t1, . . . , tn, b) where q(x1, . . . , xn+1) is a comb-term,
b ∈ C and ti ∈ T (F, C).

The following definition makes sense only if F is commutative. Let c ∈
Cxt(F, C) − {Id}. Let us define by structural induction on c a comb-term
q(x1, . . . , xn, u) for some n, and a sequence (t1, . . . , tn) of terms in T (F, C) such
that c � q(t1, . . . , tn, u) and � denotes the equivalence of terms with respect to
the intended class C of algebras (for which F is commutative).

We define Comb(c) and seq(c) as follows:

1. Comb(c) = f(x1, u) and seq(c) = (t) if c = f(t, Id).
2. Comb(c) = Comb(c′) and seq(c) = seq(c′) if c = f(c1, t) and c′ = f̃(t, c1).
3. Comb(c) = f(x1, q(x2, . . . , xn+1, u)) and seq(c) = (t) · seq(c′) if c = f(t, c1),

c1 �= Id and Comb(c′) = q(x1, . . . , xn, u).
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These definitions actually extend to contexts defined as terms in SPEc(F, C).
We need only add one clause to (1)-(3):

(4) If c = c′ ◦ c′′ (so that c′ �= Id, c′′ �= Id) if Comb(c′) = q′(x1, . . . , xp, u) and
Comb(c′′) = q′′(x1, . . . , xn, u) then we define

Comb(c) as q′(x1, . . . , xp, q
′′(xp+1, . . . , xn+p, u))

and seq(c) as seq(c′) · seq(c′′).

In the following, we will extend the equivalence relation � by letting Eval(t) �
t and Eval(c) � c for terms in SPEt(F, C) ∪ SPEc(F, C).

Flexibility. We let (F ′, C′) and (F, C) be two binary signatures such that
(F, C) ⊆ (F ′, C′). We let C be a set of (F ′, C′)-algebras. All equivalences of
terms and contexts denoted by � will be considered with respect to C . We say
that (F ′, C′) is (F, C)-flexible if the following conditions hold:

1. F and F ′ are commutative.
2. There exist three mappings: q �→ q̂, q �→ f q and (q, q′) �→ f q,q′

which satisfy
the following properties:

(2.1) For every comb-term q(x1, . . . , xn, u) over F with n ≥ 2, q̂ is a comb-term
q̂(x1, . . . , xn) over F ′.

(2.2) If q(x1, u) is the comb-term g(x1, u) then q̂ = x1 and f q = g.
(2.3) For every q as in (2.1), we have f q ∈ F ′ and q � f q(q̂, u).
(2.4) For every two comb-terms as in (2.1) or (2.2) q(x1, . . . , xp, u) and q′

(x1, . . . , xn, u) we have f q,q′ ∈ F ′ and

̂q′′ � f q,q′
(q̂(x1, . . . , xp), ̂q′(xp+1, . . . , xp+n))

where q′′ = q(x1, . . . , xp, q
′(xp+1, . . . , xp+n, u)).

If q is a comb-term as in (2.2), Property (2.3) also holds from the definitions
of q̂ and f q.

Proposition 5. ([4]) If (F ′, C′) is (F, C)-flexible, then for every term t in
SPEt(F, C) one can define a term t̃ in T (F ′, C′) that is equivalent to t and
such that |t̃|F ′C′ = |t|FC and ht(t̃) ≤ ht(t).

Combining Theorem 3 and Proposition 5 we get the following theorem:

Theorem 4. ([4]) Let (F ′, C′) be an (F, C)-flexible S-signature. Every term t
in T (F, C) of size n is equivalent to a 3-balanced term t′ in T (F ′, C′). This term
can be constructed in time O(n log(n)), if we assume that q̂, f q, f q,q′

can be
constructed in time O(max{|q|, |q′|}).

We can apply this theorem to m-clique-width, rank-width, clique-width and
NLC-width. It will suffice to check the flexibility condition for appropriate super-
signatures of the signatures that define m-clique-width, rank-width, clique-width
and NLC-width.
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Theorem 5. ([4,8])

1. Every graph of m-clique-width k is the value of a 3-balanced term of m-clique-
width at most 2k.

2. Every graph of rank-width k is the value of a 3-balanced term of rank-width
at most 2k.

3. Every graph of clique-width or NLC-width k is the value of a 3-balanced
clique-width expression of clique-width or NLC-width at most k × 2k+1.
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Abstract. The k-power graph of a graph G is the graph in which two
vertices are adjacent if and only if there is a path between them in G of
length at most k. We show that (1.) the k-power graph of a tree has NLC-
width at most k+2 and clique-width at most k+2+max(� k

2 �−1, 0), (2.)
the k-leaf-power graph of a tree has NLC-width at most k and clique-
width at most k+max(�k

2 �−2, 0), and (3.) the k-power graph of a graph

of tree-width l has NLC-width at most (k + 1)l+1 − 1 and clique-width
at most 2 · (k + 1)l+1 − 2.

Keywords: tree powers, leaf powers, tree-width, clique-width, NLC-
width, strictly chordal.

1 Introduction

The clique-width of a graph G is the smallest integer k such that G can be defined
by operations on vertex-labeled graphs using k labels [CO00]. These operations
are the vertex disjoint union, the addition of edges between vertices controlled
by a label pair, and the relabeling of vertices. The NLC-width1 of a graph G
is defined similarly in terms of closely related operations [Wan94]. The only es-
sential difference between the composition mechanisms of clique-width bounded
graphs and NLC-width bounded graphs is the addition of edges. In an NLC-
width composition the addition of edges is combined with the union operation.
Every graph of clique-width at most k has NLC-width at most k and every graph
of NLC-width at most k has clique-width at most 2k [Joh98]. Both concepts are
useful, because it is sometimes much more comfortable to use NLC-width ex-
pressions instead of clique-width expressions and vice versa, respectively. The
concept of clique-width generalizes the well-known concept of tree-width defined
in [RS86] by the existence of a tree-decomposition. Clique-width bounded graphs
and tree-width bounded graphs are particularly interesting from an algorithmic
point of view. Many NP-complete graph problems can be solved in polynomial
1 The abbreviation NLC results from the node label controlled embedding mechanism

originally defined for graph grammars.
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time for graphs of bounded clique-width [CMR00] and for graphs of bounded
tree-width [CM93], respectively.

A well known concept in graph theory is the concept of graph powers [BLS99].
The k-power graph Gk of a graph G is a graph with the same vertex set as G.
Two vertices in Gk are adjacent if and only if there is a path between them in
G of length at most k. Determining whether a given graph is a k-power graph
is NP-complete for every fixed integer k ≥ 2 [MS94].

In this paper, we consider power graphs of graphs of bounded tree-width and
leaf-power graphs. A tree-power graph is the power graph of a tree, a leaf-power
graph is the subgraph of a tree-power graph induced by the leaves of the tree.
Obviously even leaf-power graphs have unbounded tree-width. In order to obtain
a tree structured decomposition we consider the clique-width of these graphs.

Todinca has stated in [Tod03] that the k-power graph of a graph of clique-
width l has clique-width at most 2 · l ·kl. Since trees have NLC-width and clique-
width 3, its follows that a k-tree-power graph has NLC-width and clique-width
at most 6 ·k3. We prove in this paper that k-tree-power graphs have NLC-width
at most k + 2 and clique-width at most k + 2 + max(�k

2 � − 1, 0). We also show
that k-leaf-power graphs have NLC-width at most k and clique-width at most
k + max(�k

2� − 2, 0).
Corneil and Rotics have shown in [CR05] that every graph G of tree-width l

has clique-width at most 3 ·2l−1. This result implies that Gk has NLC-width and
clique-width at most 3 · 2l · k3·2l−1

. We improve this bound and show that the
k-power graph of a graph of tree-width l has NLC-width at most (k + 1)l+1 − 1
and clique-width at most 2 · (k + 1)l+1 − 2.

Since strictly chordal graphs are 4-leaf-power graphs, see [KLY06], our results
imply that strictly chordal graphs have NLC-width and clique-width at most 4.

2 Preliminaries

Let [k] := {1, . . . , k} be the set of all integers between 1 and k. We work with
finite undirected vertex labeled graphs G = (VG, EG, labG), where VG is a finite
set of vertices labeled by some mapping labG : VG → [k] and EG ⊆ {{u, v} |
u, v ∈ VG, u �= v} is a finite set of edges. The labeled graph consisting of a single
vertex labeled by a ∈ [k] is denoted by •a.

The notion of clique-width is defined by Courcelle and Olariu in [CO00].

Definition 1 (Clique-width, [CO00]). Let k be some positive integer. The
class CWk of labeled graphs is recursively defined as follows.

1. The single vertex graph •a for some a ∈ [k] is in CWk.
2. Let G = (VG, EG, labG) ∈ CWk and J = (VJ , EJ , labJ ) ∈ CWk be two vertex

disjoint labeled graphs, then

G ⊕ J := (V ′, E′, lab′)

defined by V ′ := VG ∪ VJ , E′ := EG ∪ EJ , and
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lab′(u) :=
{

labG(u) if u ∈ VG

labJ(u) if u ∈ VJ

is in CWk.

1. Let a, b ∈ [k] be two distinct integers and G = (VG, EG, labG) ∈ CWk be a
labeled graph, then
(a) ρa→b(G) := (VG, EG, lab′) defined by

lab′(u) :=
{

labG(u) if labG(u) �= a
b if labG(u) = a

is in CWk and
(b) ηa,b(G) := (VG, E′, labG) defined by

E′ := EG ∪ {{u, v} | u, v ∈ VG, u �= v, labG(u) = a, labG(v) = b}

is in CWk.

The notion of NLC-width is defined by Wanke in [Wan94].

Definition 2 (NLC-width, [Wan94]). Let k be some positive integer. The
class NLCk of labeled graphs is recursively defined as follows.

1. The single vertex graph •a for some a ∈ [k] is in NLCk.
2. Let G = (VG, EG, labG) ∈ NLCk and R : [k] → [k] be a function, then

◦R(G) := (VG, EG, lab′)

defined by lab′(u) := R(labG(u)) is in NLCk.
3. Let G = (VG, EG, labG) ∈ NLCk and J = (VJ , EJ , labJ ) ∈ NLCk be two

vertex disjoint labeled graphs and S ⊆ [k]2 be a set of label pairs, then

G ×S J := (V ′, E′, lab′)

defined by V ′ := VG ∪ VJ ,

E′ := EG ∪ EJ ∪ {{u, v} | u ∈ VG, v ∈ VJ , (labG(u), labJ(v)) ∈ S},

and

lab′(u) :=
{

labG(u) if u ∈ VG

labJ(u) if u ∈ VJ

is in NLCk.

The clique-width (NLC-width) of a labeled graph G is the least integer k such
that G ∈ CWk (G ∈ NLCk, respectively). An expression built with the opera-
tions •a, ⊕, ρa→b, ηa,b for integers a, b ∈ [k] is called a clique-width k-expression.
An expression built with the operations •a, ×S , ◦R for a ∈ [k], S ⊆ [k]2, and
R : [k] → [k] is called an NLC-width k-expression. The graph defined by an
expression X is denoted by val(X).
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T 2T

Fig. 1. The figure shows a tree T and its 2-tree-power graph T 2

3 Clique-Width of Tree-Power Graphs

Any k-power graph of a tree is a chordal graph, see [LS95]. Determining whether
a given graph G is the k-power graph of a tree can be done in linear time for
every fixed integer k [CKL06].

Theorem 1. The k-power graph of a tree has NLC-width at most k + 2 and
clique-width at most k + 2 + max(�k

2 � − 1, 0).

Proof (Sketch). Let T be a tree with root u. Then for every vertex v of T we
define an NLC-width (k + 2)-expression Xv. This expression will define the k-
power graph of the subtree of T with root v. The set of labels is the set of
integers2 between 0 and k + 1. In val(Xv) a vertex has label r ≤ k if its distance
to v is r. That is, the label of v is 0, the labels of the children of v are 1, and so
on. All vertices with a distance to v greater than k have label k + 1.

Let v1, . . . , vm be the children of vertex v in T . Then

Xv :=

⎧

⎨

⎩

•0 if m = 0
◦R(Xv1) ×S •0 if m = 1
◦R(Xv1) ×S . . . ×S ◦R(Xvm) ×S •0 if m > 1

where
S := {(a, b) | a, b ∈ {0, . . . , k} and a + b ≤ k}

and

R(a) :=
{

a + 1 if 0 ≤ a ≤ k
k + 1 if a = k + 1 .

Then Xu defines the k-power graph of tree T and uses at most k + 2 labels.
To define a clique-width expression Xv, the edges between the vertices of

two subtrees can be inserted with additional auxiliary labels. These labels are
necessary, because we can not insert edges between equal labeled vertices. We
only need to relabel the labels 1, . . . , �k

2� in one of the two combined graphs. After

2 In the definition of the NLC-width and clique-width, the vertex labels are always
positive integers. It is easy to see that the labels we use for the vertices can be
changed to conform the definition without to increase the number of used labels.
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all succeeding edge insertions between the two subtrees the auxiliary labels can
be relabeled back to 1, . . . , �k

2�. Since label 0 can be used as an auxiliary label,
we only need �k

2 � − 1 auxiliary labels at all. �

By the results of [CKL06] and Theorem 1, it follows that for every k-tree power
graph G, an NLC-width (k+2)-expression and a clique-width (k+2+max(�k

2 �−
1, 0))-expression can be found in linear time for every fixed integer k.

4 Clique-Width of Leaf-Power Graphs

The notion of a leaf-power graph was introduced in [NRT02] motivated by the
reconstruction of phylogenetic trees as a certain case of tree-power graphs. The
k-leaf-power graph T k of a tree T is a graph whose vertices are the leaves of T .
Two vertices in T k are adjacent if and only if there is a path between them in
T of length at most k. Figure 2 shows an example of a 3-leaf-power graph.
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Fig. 2. A tree T and its 3-leaf-power graph G

Every k-leaf-power graph is strongly chordal, see [BL06]. A graph is a 2-leaf-
power graph if and only if it is the disjoint union of cliques, thus they have
NLC-width 1 and clique-width at most 2. A graph is a 3-leaf-power graph if and
only if it is obtained from a tree T by substituting the vertices of T by cliques,
see [BL06]. That is, the NLC-width and clique-width of 3-leaf-power graphs is at
most 3. 3-leaf-power and 4-leaf-power graphs can be recognized in linear time,
see [BL06] and [BLS05]. For the recognition of k-leaf-power graphs with k ≥ 5
no polynomial time algorithms are known.

In [Rau06, DGHN05] a forbidden subgraph characterization for prime 4-leaf-
power graphs is given. All strictly chordal graphs, i.e. chordal graphs whose
clique hypergraph is a strict hypertree, are k-leaf-power graphs for k ≥ 4. The
corresponding trees can be found in linear time, see [KLY06].

We next give a bound on the NLC-width and clique-width of k-leaf-power
graphs for k ≥ 2.

Theorem 2. The k-leaf-power graph of a tree has NLC-width at most k and
clique-width at most k + max(�k

2 � − 2, 0).
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Proof (Sketch). Let T be a tree with root u. Then for every inner vertex v of
T we define an NLC-width k-expression Xv. This expression will define the k-
leaf-power graph of the subtree of T with root v. The set of labels is the set of
integers between 1 and k. In val(Xv) a vertex u has label r < k if its distance to
v is r. All vertices with a distance to v greater than or equal to k have label k.

Let v1, . . . , vm be the non-leaf children of inner vertex v in T and let l be
the number of children of v that are leaves. A basic observation for leaf-power
graphs is that the leaf children of v induce a complete graph of T k, for k ≥ 2.
Let Cl be an NLC-width 1-expression for a complete graph on l vertices. Then

Xv :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Cl if m = 0 and l > 0
◦R(Xv1) ×S Cl if m = 1 and l > 0
◦R(Xv1) ×S . . . ×S ◦R(Xvm) ×S Cl if m > 1 and l > 0
◦R(Xv1) if m = 1 and l = 0
◦R(Xv1) ×S . . . ×S ◦R(Xvm) if m > 1 and l = 0

where
S := {(a, b) | a, b ∈ {1, . . . , k − 1} and a + b ≤ k}

and

R(a) :=
{

a + 1 if 1 ≤ a ≤ k − 1
k if a = k

.

Then Xu defines the k-leaf-power graph of T and uses at most k labels.
To define a clique-width expression Xv, Cl is a clique-width 2-expression that

defines a clique with l vertices all labeled by label 1. The edges between the
leaves of two subtrees can be inserted similarly as in the proof of Theorem 1 with
additional auxiliary labels. Now we only need to relabel the labels 2, . . . , �k

2 � in
one of the two combined graphs. Since label 1 can be used as auxiliary label, we
only need �k

2� − 2 auxiliary labels at all. �

In [Tod03] the set of clique-width operations was extended by operations of the
form ηa,a in order to define clique-width expressions that allow to insert edges
between equal labeled vertices. The set of k-labeled graphs which can be defined
by these extended clique-width operations using k labels is denoted by CW′

k.
A simple observation shows that CWk ⊆ CW′

k ⊆ CW2k. It is easy to see that
every k-tree-power graph is in CW′

k+2 and every k-leaf-power graph is in CW′
k.

5 Clique-Width of k-Power Graphs of Graphs of Bounded
Tree-Width

Now we consider the clique-width of power graphs of graphs of bounded tree-
width.

Theorem 3. The k-power graph of a graph of tree-width l has NLC-width at
most (k + 1)l+1 − 1.
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To prove Theorem 3, we need the following notations. The tree-width of a graph
is defined by Robertson and Seymour in [RS86]. A graph of tree-width l is also
known as partial l-tree, see Rose [Ros74]. A partial l-tree is a subgraph of an
l-tree which is defined as follows:

1. A complete graph with l vertices is an l-tree.
2. If G is an l-tree, then the result obtained by adding a new vertex with edges

to l vertices of a complete subgraph of G is an l-tree.

Let G be a graph with n vertices. Let o = (v1, . . . , vn) be an order of the
n vertices of G, i.e. every vertex of G appears in sequence o exactly once. Let
N+(G, o, i) and N−(G, o, i) for i = 1, . . . , n be the set of neighbors vj of vertex
vi with i < j and j < i, respectively. That is,

N+(G, o, i) := {vj | {vi, vj} ∈ EG ∧ i < j}

and
N−(G, o, i) := {vj | {vj , vi} ∈ EG ∧ j < i}.

A vertex order o = (v1, . . . , vn) for graph G is called a perfect elimination order
(PEO) if the vertices of N+(G, o, i) for i = 1, . . . , n induce a complete subgraph
of G.

Proof (of Theorem 3, Sketch). Let G be a partial l-tree that is a subgraph of an
l-tree Ĝ, such that G has the same vertex set as Ĝ. By the recursive definition of
l-trees, we know that each l-tree Ĝ has a PEO. Let o := (v1, . . . , vn) be a PEO of
Ĝ. Then, the vertices of the sets N+(Ĝ, o, 1), . . . , N+(Ĝ, o, n− l) induce l vertex
complete subgraphs of Ĝ. The vertices of each N+(Ĝ, o, i) for n − l < i ≤ n
induce an (n − i) vertex complete subgraph of Ĝ.

Each l-tree Ĝ is (l + 1)-colorable, because we can assign to vi any color not
used by the vertices of N+(Ĝ, o, i) for i = 1, . . . , n. Let col : VĜ → [l + 1] be an
(l + 1)-coloring of l-tree Ĝ, that is, col(vi) �= col(vj) for all edges {vi, vj} ∈ EĜ.
The mapping col is also an (l + 1)-coloring of partial l-tree G.

We define Cvi , 1 ≤ i ≤ n, to be the set of all colors of the vertices from
N+(G, o, i), i.e.,

Cvi := {col(vj) | {vi, vj} ∈ EG ∧ i < j}.

The structure of l-tree Ĝ with respect to PEO o can be characterized by the
following tree T := (VT , ET ) defined by

VT := VĜ

ET := {{vi, vj} ∈ EĜ | i < j ∧ ∀j′, i < j′ < j : {vi, vj′} �∈ EĜ}.

Graph T is a tree, because for each vertex vi, i < n, tree T has exactly one edge
{vi, vj} ∈ EĜ with i < j. Let vn be the root of T .
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We recursively define for i = 1, . . . , n an NLC-width expression Xi which
defines the k-power graph of the subgraph of G induced by the vertices vj ,
1 ≤ j ≤ i. The vertices will be labeled by sets2 of pairs (c, d), where c ∈ [l +1] is
a color and d ∈ [k] is a distance. In a vertex label, for every color c ∈ [l+1] there
is at most one pair (c, d) for some d ∈ [k]. This implies that we have at most
(k + 1)l+1 different vertex labels. A color c is either not used, or used together
with exactly one of k distances. We will see later that there is one label which
is not used at all, this is the label {(1, 1), . . . , (l + 1, 1)}.

For a label C ⊆ [l + 1] × [k] and a positive integer r let

C+r := {(c, d + r) | (c, d) ∈ C and d + r ≤ k}.

For two labels C1, C2 ⊆ [l + 1] × [k] let

C1
min
∪ C2

be the set of all pairs (c, d) ∈ C1 ∪C2 such that there is no pair (c, d′) ∈ C1 ∪C2
with d′ < d.

We first define an NLC-width expression Xn for a subgraph of Gk with vertex
set VGk . After that, we will show how the missing edges are added by inserting
additional pairs in the relations S used by the edge insertion operations ×S of
Xn.

Expression Xi for i = 1, . . . , n is defined as follows.

1. If N−(T, o, i) = ∅, i.e. if vertex vi is a leaf in tree T , then we define

Xi := •{(c,1) | c∈Cvi
}.

2. If N−(T, o, i) = {vj1 , . . . , vjm}, i.e. if vj1 , . . . , vjm are the sons of vertex vi in
tree T , then we define

Xi,1 := Xj1

Xi,2 := Xi,1 ×S1 Xj2
...

Xi,m := Xi,m−1 ×Sm−1 Xjm

Xi := ◦R(•Di ×Sm Xi,m),

where all S1, . . . , Sm−1 are (so far) empty and

Sm := {(Di, C) | C ⊆ [l + 1] × [k] ∧ (col(vi), d) ∈ C for some d}.

The label Di is defined as follows. Consider all vertices of val(Xi,m) whose
labels have a pair with color col(vi). These are exactly the vertices which will
be connected with the vertex vi of val(•Di) by ×Sm . Every of these labels
has exactly one pair with color col(vi). Let C1, . . . , Cr be the labels of these
vertices and let (col(vi), d1), . . . , (col(vi), dr) be the corresponding pairs with
color col(vi). Then Di is the set



84 F. Gurski and E. Wanke

Di := {(c, 1) | c ∈ Cvi}
min
⋃

1≤j≤r

(Cj − {(col(vi), dj)})+dj

Operation ◦R relabels every label Cs, 1 ≤ s ≤ r, as defined above into

R(Cs) := Cs − {(col(vi), ds)}
min
⋃

{(c, 1 + ds) | c ∈ Cvi}

min
⋃

1≤j≤r,j �=s

(Cj − {(col(vi), dj)})+(dj+ds)

Note that operation ◦R does not change label Di of vi, because it has no pair
with color col(vi).

Let p = (vi1 , . . . , vim) be a path in the partial l-tree G. Path p is called a
high-end-path if ij < im for j = 1, . . . , m − 1. The graph defined by NLC-width
expression Xn above has an edge between two vertices vi, vj , i < j, if and only
if there is a high-end-path from vi to vj in G of length at most k. Additionally3,
if u and u′ are two equal labeled vertices of val(Xi), 1 ≤ i ≤ n, then there is a
high-end-path from u to some vertex vj , j > i, of length k′ ≤ k in G if and only
if there is a high-end-path from u′ to vj of length k′ in G.

Now we extend the sets S of all edge insertion operations ×S of Xn as follows.
For every subexpression Y ×S Z of Xn such that graph val(Y ) defined by Y has a
vertex u, graph val(Z) defined by Z has a vertex w, and there is a path p of length
k′ ≤ k between u and w in G, we add the label pair (labval(Y )(u), labval(Z)(w))
to S. The new expression is denoted by ˜Xn.

The graph val( ˜Xn) defined by the new expression ˜Xn certainly has all edges
of the k-power graph Gk. The following observation shows that it has only edges
of Gk. Let vj be the vertex of the path p with the largest index j with respect
to the perfect elimination order o. Then, the first part of p from u to vj is a
high-end-path of length k1 ≤ k′ and the last part of p from w back to vj is a
high-end-path of length k2 ≤ k′ such that k1 + k2 = k′. By the definition of the
vertex labeling, every vertex of val(Y ) labeled by labval(Y )(u) has a high-end-
path to vj of length k1 in G, and every vertex of val(Z) labeled by labval(Z)(w)
has a high-end-path to vj of length k2 in G. Thus, all vertices of val(Y ) labeled by
labval(Y )(u) can be connected with all vertices of val(Z) labeled by labval(Z)(w),
because there are paths between them of length k′ ≤ k in G. �

Since every graph of NLC-width k has clique-width at most 2k, we get the
following corollary.

Corollary 1. The k-power graph of a graph of tree-width l has clique-width at
most 2 · (k + 1)l+1 − 2.

3 The proof of this fact is omitted due to of space restrictions for this abstract.
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LIAFA - Univ. Paris Diderot
{limouzy,fm,rao}@liafa.jussieu.fr

Abstract. NLC-width is a variant of clique-width with many applica-
tion in graph algorithmic. This paper is devoted to graphs of NLC-width
two. After giving new structural properties of the class, we propose a
O(n2m)-time algorithm, improving Johansson’s algorithm [14]. More-
over, our alogrithm is simple to understand. The above properties and
algorithm allow us to propose a robust O(n2m)-time isomorphism algo-
rithm for NLC-2 graphs. As far as we know, it is the first polynomial-time
algorithm.

1 Introduction

NLC-width is a graph parameter introduced by Wanke [16]. This notion is tightly
related to clique-width introduced by Courcelle et al. [2]. Both parameters were
introduced to generalise the well known tree-width. The motivation on research
about such width parameter is that, when the width (NLC-, clique- or tree-width)
is bounded by a constant, then many NP-complete problems can be solved in
polynomial (even linear) time, if the decomposition is provided.

Such parameters give insights on graph structural properties. Unfortunately,
finding the minimum NLC-width of the graph was shown to be NP-hard by
Gurski et al. [12]. Some results however are known. Let NLC-k be the class
of graph of NLC width bounded by k. NLC-1 is exactly the class of cographs.
Probe-cographs, bi-cographs and weak-bisplit graphs [9] belong to NLC-2. Jo-
hansson [14] proved that recognising NLC-2 graphs is polynomial and provided
an O(n4 log(n)) recognition algorithm. Complexity for recognition of NLC-k,
k ≥ 3, is still unknown.

In this paper we improve Johansson’s result down to O(n2m). Our approach
relies on graph decompositions. We establish the tight links that exist between
NLC-2 graphs and the so-called modular decomposition, split decomposition,
and bi-join decomposition.

NLC-2 can be defined as a graph colouring problem. Unlike NLC-k classes, for
k ≥ 3, recolouring is useless for prime NLC-2 graphs. That allow us to propose
a canonical decomposition of bi-coloured NLC-2 graphs, defined as certain bi-
coloured split operations. This decomposition can be computed in O(nm) time
if the colouring is provided. If a graph is prime, there using split and bi-join
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decompositions, we show that there is at most O(n) colourings to check. Finally,
modular decomposition properties allow to reduce NLC-2 graph decomposition
to prime NLC-2 graph decomposition. Section 3 explains this O(n2m)-time de-
composition algorithm.

In Section 4 is proposed an isomorphism algorithm. Using modular, split and
bi-join decompositions and the canonical NLC-2 decomposition, isomorphism
between two NLC-2 graphs can be tested in O(n2m) time.

2 Preliminaries

A graph G = (V, E) is pair of a set of vertices V and a set of edges E. For a
graph G, V (G) denote its set of vertices, E(G) its set of edges, n(G) = |V (G)|
and m(G) = |E(G)| (or V , E, n and m if the graph is clear in the context).
N(x) = {y ∈ V : {x, y} ∈ E} denotes the neighbourhood of the vertex x, and
N [x] = N(v) ∪ {v}. For W ⊆ V , G[W ] = (W, E ∩ W 2) denote the graph induced
by W . Let A and B be two disjoint subsets of V . Then we note A 1© B if for all
(a, b) ∈ A×B, then {a, b} ∈ E, and we note A 0© B if for all (a, b) ∈ A×B, then
{a, b} �∈ E. Two graphs G = (V, E) and G′ = (V ′, E′) are isomorphic (noted
G 	 G′) if there is a bijection ϕ : V → V ′ such that {x, y} ∈ E ⇔ {ϕ(x), ϕ(y)} ∈
E′, for all u, v ∈ V .

A k-labelling (or labelling) is a function l : V → {1, . . . , k}. A k-labelled graph
is a pair of a graph G = (V, E) and a k-labelling l on V . It is denoted by (G, l)
or by (V, E, l). Two labelled graphs (V, E, l) and (V ′, E′, l′) are isomorphic if
there is a bijection ϕ : V → V ′ such that {u, v} ∈ E ⇔ {ϕ(x), ϕ(y)} ∈ E′ and
l(u) = l′(ϕ(u)) for all u, v ∈ V . Let k be a positive integer. The class of NLC-k
graphs is defined recursively by the following operations.

– For all i ∈ {1, . . . , k}, ·(i) is in NLC-k, where ·(i) is the graph with one
vertex labelled i.

– Let G1 = (V1, E1, l1) and G2 = (V2, E2, l2) be NLC-k and let S ⊆ {1, . . . , k}2.
Then G1 ×S G2 is in NLC-k, where G1 ×S G2 = (V, E, l) with V = V1 ∪ V2,

E = E1 ∪ E2 ∪ {{u, v} : (u, v) ∈ V1 × V2 and (l1(u), l2(v)) ∈ S}

and for all u ∈ V , l(u) =

{

l1(u) if u ∈ V1

l2(u) if u ∈ V2.

– Let R : {1, . . . , k} → {1, . . . , k} and G = (V, E, l) be NLC-k. Then ρR(G) is
in NLC-k, where ρR(G) = (V, E, l′) such that l′(u) = R(l(u)) for all u ∈ V .

A graph is NLC-k if there is a k-labelling of G such that (G, l) is in NLC-k.
A k-labelled graph is NLC-k ρ-free if it can be constructed without the ρR

operation.

Modules and modular decomposition. A module in a graph is a non-empty subset
X ⊆ V such that for all u ∈ V \ X , then either N(u) ∩ X = ∅ or X ⊆ N(u). A
module is trivial if |X | ∈ {1, |V |}. A graph is prime (w.r.t. modular decomposi-
tion) if all its modules are trivial. Two sets X and X ′ overlap if X ∩ X ′,X \ X ′
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and X ′ \ X are non-empty. A module X is strong if there is no module X ′ such
that X and X ′ overlap. Let M′(G) be the set of modules of G, let M(G) be the
set of its strong modules, and let P(G) = {M1, . . . , Mk} be the maximal (w.r.t.
inclusion) members of M(G) \ {V }.

Theorem 1. [11] Let G = (V, E) be a graph such that |V | ≥ 2. Then:

– if G is not connected, then P(G) is the set of connected components of G,
– if G is not connected, then P(G) is the set of connected components of G,
– if G and G are connected, then P(G) is a partition of V and is formed with

the maximal members of M′ \ {V }.

P(G) is a partition of V , and G can be decomposed into G[M1], . . . , G[Mk],
where P(G) = {M1, . . . , Mk}. The characteristic graph G∗ of a graph G is the
graph of vertex set P(G) and two P, P ′ ∈ P(G) are adjacent if there is an edge
between P and P ′ in G (and so there is no non-edges since P and P ′ are two
modules). The recursive decomposition of a graph by this operation gives the
modular decomposition of the graph, and can be represented by a rooted tree,
called the modular decomposition tree. It can be computed in linear time [15].
The nodes of the modular decomposition tree are exactly the strong modules, so
in the following we make no distinction between the modular decomposition of
G and M(G). Note that |M(G)| ≤ 2 × n − 1. For M ∈ M(G), let GM = G[M ]
and G∗

M its characteristic graph.

Lemma 1. [14] Let G be a graph. G is NLC-k if and only if every characteristic
graph in the modular decomposition of G is NLC-k.

Moreover, a NLC-k expression for G can be easily constructed from the modular
decomposition and from NLC-k expressions of prime graphs. On prime graphs,
NLC-2 recognition is easier:

Lemma 2. [14] Let G be a prime graph. Then G is NLC-2 if and only if there
is a 2-labelling l such that (G, l) is NLC-2 ρ-Free.

Bi-partitive family. A bipartition of V is a pair {X, Y } such that X ∩ Y = ∅,
X ∪ Y = V and X and Y are both non empty. Two bipartitions {X, Y } and
{X ′, Y ′} overlap if X ∩Y , X ∩Y ′, X ′∩Y and X ′∩Y ′ are non empty. A family F
of bipartitions of V is bipartitive if (1) for all v ∈ V , {{v}, V \ {v}} ∈ F and (2)
for all {X, Y } and {X ′, Y ′} in F such that {X, Y } and {X ′, Y ′} overlap, then
{X ∩ X ′, Y ∪ Y ′}, {X ∩ Y ′, Y ∪ X ′}, {Y ∩ X ′, X ∪ Y ′}, {Y ∩ Y ′, X ∪ X ′} and
{XΔX ′, XΔY ′} are in F (where XΔY = (X \Y )∪(Y \X)). Bipartitive families
are very close to partitive families [1], which generalise properties of modules in
a graph.

A member {X, Y } of a bipartitive family F is strong if there is no {X ′, Y ′}
such that {X, Y } and {X ′, Y ′} overlap. Let T be a tree. For an edge e in the
tree, {C1

e , C2
e } denote the bipartition of leaves of T such that two leaves are in

the same set if and only if the path between them avoids e. Similarly, for an
internal node α, {C1

α, . . . , C
d(α)
α } denote the partition of leaves of T such that

two leaves are in the same set if and only if the path between them avoid α.
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Fig. 1. A module, a bi-join, a split and a co-split

Theorem 2. [4] Let F be a bipartitive family on V . Then there is an unique
unrooted tree T , called the representative tree of F , such that the set of leaves
of T is V , the internal nodes of T are labelled degenerate or prime, and

- for every edge e of T , {C1
e , C2

e} is a strong member of F , and there is no
other strong member in F ,

- for every node α labelled degenerate, and for every ∅ � I � {1, . . . , d(α)},
{∪i∈IC

i
α, V \ ∪i∈IC

i
α} is in F , and there is no other member in F .

A split in a graph G = (V, E) is a bipartition {X, Y } of V such that the set of
vertices in X having a neighbour in Y have the same neighbourhood in Y (i.e., for
all u, v ∈ X such that N(u)∩Y �= ∅ and N(v)∩Y �= ∅, then N(u)∩Y = N(v)∩Y ).
A co-split in a graph G is a split in G. The family of split in a connected graph
is a bipartitive family [3]. The split decomposition tree is the representative tree
of the family of splits, and can be computed in linear time [5]. Let α be an
internal node of the split decomposition tree of a connected graph G. For all
i ∈ {1, . . . , d(α)} let vi ∈ Ci

α such that N(vi) \ Ci
α �= ∅. Since G is connected,

such a vi always exists. G[{v1, . . . , vd(α)}] denote the characteristic graph of
α. The characteristic graph of a degenerate node is a complete graph or a
star [3].

A bi-join in a graph is a bipartition {X, Y } such that for all u, v ∈ X , {N(u)∩
Y, Y \ N(u)} = {N(v) ∩ Y, Y \ N(v)}. The family of bi-joins in a graph is
bipartitive. The bi-join decomposition tree is the representative tree of the family
of bi-joins, and can be computed in linear time [7,8]. Let α be an internal node of
the bi-join decomposition tree of a graph G. For all i ∈ {1, . . . , d(α)} let vi ∈ Ci

α.
G[{v1, . . . , vd(α)}] denote the characteristic graph of α. The characteristic graph
of a degenerate node is a complete bipartite graph or a disjoint union of two
complete graphs [7,8].

3 Recognition of NLC-2 Graphs

3.1 NLC-2 ρ-Free Canonical Decomposition

In this section, G = (V, E, l) is a 2-labelled graph such that every mono-coloured
module (i.e. a module M such that ∀v, v′ ∈ M , l(v) = l(v′)) has size 1. A couple
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(X, Y ) is a cut if X∪Y = V , X∩Y = ∅, X �= ∅ and Y �= ∅. Let S ⊆ {1, 2}×{1, 2}.
A cut (X, Y ) is a S-cut of G if for all u ∈ X and v ∈ Y , then {u, v} ∈ E if and
only if (l(u), l(v)) ∈ S. For S ⊆ {1, 2}×{1, 2} let FS(G) be the set of S-cut of G.

Definition 1 (Symmetry). We say that S ∈ {1, 2} × {1, 2} is symmetric if
(1, 2) ∈ S ⇐⇒ (2, 1) ∈ S, otherwise we say that S is non-symmetric.

Definition 2 (Degenerate property). A family F of cuts has the degen-
erate property if there is a partition P of V such that for all ∅ � X � P,
(
⋃

X∈X X,
⋃

Y ∈P\X Y ) is in F , and there is no others cut in F .

Lemma 3. For every symmetric S ⊆ {1, 2} × {1, 2}, FS(G) has the degenerate
property.

Proof. The family F{}(G) has the degenerate property since (X, Y ) is a {}-
cut if and only if there is no edges between X and Y (P is exactly the set of
connected components). For W ⊆ V , let G|W = (V, EΔW 2, l). For i ∈ {1, 2} let
Vi = {v ∈ V : l(v) = i}. Let G1 = G|V1, G2 = G|V2 and G12 = (G|V1)|V2.

– F{(1,1)}(G) = F{}(G1), F{(2,2)}(G) = F{}(G2), F{(1,1),(2,2)}(G) = F{}(G12),
– F{(1,1),(1,2),(2,1),(2,2)}(G) = F{}(G), F{(1,2),(2,1),(2,2)}(G) = F{}(G1),

F{(1,1),(1,2),(2,1)}(G) = F{}(G2), F{(1,2),(2,1)}(G) = F{}(G12).

Thus for every symmetric S ⊆ {1, 2}×{1, 2}, FS(G) has the degenerate property.

Definition 3 (Linear property). A family F of cuts has the linear property
if for all (X, Y ) and (X ′, Y ′) in F , either X ⊆ X ′ or X ′ ⊆ X.

Lemma 4. For every non-symmetric S ⊆ {1, 2} × {1, 2}, FS(G) has the linear
property.

Proof. Case S = {(1, 2)}: suppose that X \ X ′ and X ′ \ X are both non-empty.
Then if u ∈ X \ X ′ is labelled 1 and v ∈ X ′ \ X is labelled 2, u and v has
to be adjacent and non-adjacent, contradiction. Thus X \ X ′ and X ′ \ X are
mono-coloured. Now suppose w.l.o.g. that all vertices in XΔX ′ are labelled 1.
Then XΔX ′ is adjacent to all vertices labelled 2 in Y ∩ Y ′ and non adjacent
to all vertices labelled 1 in Y ∩ Y ′. Moreover XΔX ′ is non adjacent to all
vertices in X ∩ X ′. Thus XΔX ′ is a mono-coloured module, and |XΔX ′| ≥ 2.
Contradiction. For others non-symmetric S, we bring back to case {(1, 2)} like
in the proof of lemma 3.

For S ⊆ {1, 2} × {1, 2}, let PS(G) denote the unique partition of V such that
(1) for all (X, Y ) ∈ FS(G) and P ∈ PS(G), P ⊆ X or P ⊆ Y , and (2) for
all P, P ′ ∈ P , P �= P ′, there is a (X, Y ) ∈ FS(G) such that P ⊆ X and
P ′ ⊆ Y , or P ⊆ Y and P ′ ⊆ X . For a non-symmetric S ∈ {1, 2} × {1, 2}, let
P ′

S(G) = (P1, . . . , Pk) denote the unique ordering of elements in PS(G) such
that for all (X, Y ) ∈ FS(G), there is a l such that X = ∪i∈{1,...,l}Pi.

Lemma 5. If G is in NLC-2 ρ-Free, then there is a S ⊆ {1, 2} × {1, 2} such
that FS(G) is non-empty.
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Proof. If G is NLC-2 ρ-Free, then there is a S ⊆ {1, 2} × {1, 2}, and two graphs
G1 and G2 such that G = G1 ×S G2. Thus (V (G1), V (G2)) ∈ FS(G) and FS(G)
is non empty.

Lemma 6. Let G = (V, E, l) 2-labelled graph and let S ⊆ {1, 2} × {1, 2}. If
G is NLC-2 ρ-Free and has no mono-coloured non-trivial module, then for all
P ∈ PS(G), G[P ] has no mono-coloured non-trivial module.

Proof. If M is a mono-coloured module of G[P ], then M is a mono-coloured
module of G. Contradiction.

Lemma 7. Let G = (V, E, l) 2-labelled graph and let S ⊆ {1, 2} × {1, 2}. Then
G is NLC-2 ρ-Free if and only if for all P ∈ PS(G), G[P ] is NLC-2 ρ-Free.

Proof. The “only if” is immediate. Now suppose that for all P ∈ PS(G), G[P ]
is NLC-2 ρ-Free. If S is symmetric, let PS(G) = {P1, . . . , P|PS(G)|}. Then G =
((G[P1]×S G[P2])×S . . .×S G[P|PS(G)|], and G is NLC-2 ρ-Free. Otherwise, if S is
non-symmetric, let P ′

S(G) = (P1, . . . , P|PS(G)|). Then G = ((G[P1]×S G[P2])×S

. . . ×S G[P|PS(G)|], and G is NLC-2 ρ-Free.

The NLC-2 ρ-Free decomposition tree of a 2-labelled graph G is a rooted tree
such that the leaves are the vertices of G, and the internal nodes are labelled by
×S , with S ⊆ {1, 2}×{1, 2}. An internal node is degenerated if S is symmetric,
and linear if S is non-symmetric. By lemmas 5, 6 and 7, G is NLC-2 ρ-Free if
and only if it has a NLC-2 ρ-Free decomposition tree. This decomposition tree
is not unique. But we can define a canonical decomposition tree if we fix a total
order on the subsets of {1, 2} × {1, 2} (for example, the lexicographic order). If
two graphs are isomorphic, then they have the same canonical decomposition
tree. Algorithm 1 computes the canonical decomposition tree of a 2-labelled
prime graph, or fails if G is not NLC-2 ρ-Free.

Input. A 2-labelled graph G = (V, E, l)
Output. A NLC-2 ρ-Free decomposition tree, or fail if G is not NLC-2

ρ-Free
if |V | = 1 then return the leaf ·(l(v)) (where V = {v})1

Let S be the set of subsets of {1, 2} × {1, 2} and σ be the lexicographic2

order of S
foreach S ∈ S w.r.t. σ do3

Compute PS(G), and P ′
S(G) if S is non-symmetric (see algorithm 2)4

if |PS(G)| > 1 then5

Create a new ×S node β6

foreach P ∈ PS(G) (w.r.t. P ′
S(G) if S is non-symmetric) do7

make NLC-2 ρ-Free decomposition tree of G[P ] be a child of β.8

return the tree rooted at β9

fail with Not NLC-2 ρ-Free10

Algorithm 1. Computation of the NLC-2 ρ-Free canonical decomposition tree
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Algorithm 2 computes PS and P ′
S for a 2-labelled prime graph G and S ⊆

{1, 2} × {1, 2} in linear time. We need some additional definitions for this algo-
rithm and its proof of correctness. A bipartite graph is a triplet (X, Y, E) such
that E ⊆ X × Y . The bi-complement of a bipartite graph (X, Y, E) is the bi-
partite graph (X, Y, (X × Y ) \ E). A bipartite trigraph (BT) is a bipartite graph
with two types of edges: the join edges and the mixed edges. It is denoted by
B = (X, Y, Ej, Em) where Ej are the set of join edges, and Em the set of mixed
edges. A BT-module in a BT is a M ⊆ X or M ⊆ Y such that M is a module in
(X, Y, Ej) and there is no mixed edges between M and (X∪Y )\M . For v ∈ X∪Y ,
let Nj(v) = {u ∈ X ∪Y : {u, v} ∈ Ej} and Nm(v) = {u ∈ X ∪Y : {u, v} ∈ Em}.
Let dj(v) = |Nj(v)| and dm(v) = |Nm(v)|. A semi-join in a BT (X, Y, Ej , Em)
is a cut (A, B) of X ∪ Y , such that there is no edges between A ∩ Y and B ∩ X ,
and there is only join edges between A ∩ X and B ∩ Y .

In algorithm 2, B is obtained from the graph G. Vertices of X correspond to
subsets of vertices labelled 1 in G, and vertices of Y correspond to subsets of
vertices labelled 2. There is a join edge between M and M ′ in B if M 1© M ′

in G, and there is a mixed edge between M ∈ X and M ′ ∈ Y in B if there is
at least an edge and a non-edge between M and M ′ in G. Such a graph B can
easily be built in linear time from a given graph G. It suffices to consider a list
and an array bounded by the number of component in G with the same colour.
The following lemmas are close to observations in [9], but deal with BT instead
of bipartite graphs.

Lemma 8. Let G = (X, Y, Ej , Em) be a BT such that every BT-module has size
1. Let (x1, . . . , x|X|) be X sorted by (dj(x), dm(x)) in lexicographic decreasing
order. If (A, B) is a semi-join of G, then there is a k ∈ {0, . . . , |X |} such that
A ∩ X = {x1, . . . , xk}.

Input. A 2-labelled graph G, and S ⊆ {1, 2} × {1, 2}
Output. PS if S is symmetric, P ′

S if S is non-symmetric
Vi ← {v : v ∈ V and l(v) = i} ;1

if (1, 1) ∈ S then C1 ← co-connected components of G[V1];2

else C1 ← connected components of G[V1];3

if (2, 2) ∈ S then C2 ← co-connected components of G[V2];4

else C2 ← connected components of G[V2];5

B = (C1, C2, Ej , Em) ← the bipartite trigraph between the elements of C16

and C2 ;
if S ∩ {(1, 2), (2, 1)} = ∅ then7

return connected components of (C1, C2, Ej ∪ Em)8

else if S ∩ {(1, 2), (2, 1)} = {(1, 2), (2, 1)} then9

return connected components of the bi-complement of (C1, C2, Ej)10

else Search all semi-joins of B (using lemmas 8 and 9) ;11

Algorithm 2. Computation of PS and P ′
S
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Lemma 9. Let k ∈ {0, . . . , |X |} and k′ ∈ {0, . . . , |Y |}. Then (A, (X ∪ Y ) \
A), where A = {x1, . . . , xk, y1, . . . , yk′}, is a semi-join of G if and only if
∑k

i=1 dj(xi)−
∑k′

i=1 dj(yi) = k × (|Y |−k′) and
∑k

i=1 dm(xi)−
∑k′

i=1 dm(yi) = 0.

Theorem 3. Algorithm 2 is correct and runs in linear time.

Proof. Correctness: Suppose that (A, B) is a S-cut. If (1, 1) �∈ S, then there
is no edge between A ∩ V1 and B ∩ V1, thus (A, B) cannot cut a component
C1 (and similarly for (1, 1) ∈ S, and for C2). Now we work on the BT B =
(C1, C2, Ej , Em). If S ∩ {(1, 2), (2, 1)} = ∅, then S-cuts correspond exactly to
connected components of B, and if S ∩ {(1, 2), (2, 1)} = {(1, 2), (2, 1)} then S-
cuts correspond exactly to connected components of the BT of G, which is
(C1, C2, (C1 × C2) \ (Ej ∪ Em), Em). Finally, if S is non-symmetric, S-cuts corre-
spond to semi-joins of B.

Complexity: It is well admitted that we can perform a BFS on a graph or its
complement in linear time [13,6]. The instructions on lines [2-5,8] can be done
with a BFS on a graph or its complement. It is easy to see that we can do a BFS
on the bi-complement in linear time (like a BFS on a complement graph, with
two vertex lists for X and Y ), so instruction line 10 can be done in linear time.
Finally, the operations at line 11 are done in linear time.

These results can be summarized as:

Theorem 4. Algorithm 1 computes the canonical NLC-2 ρ-Free decomposition
tree of a 2-labelled graph in O(nm) time.

3.2 NLC-2 Decomposition of a Prime Graph

In this section, G is an unlabelled prime (w.r.t. modular decomposition) graph,
with |V | ≥ 3.

Definition 4 (2-bimodule). A bipartition {X, Y } of V is a 2-bimodule if X
can be partitioned into X1 and X2, and Y into Y1 and Y2 such that for all
(i, j) ∈ {1, 2} × {1, 2}, then either Xi 0© Yj or Xi 1© Yj. It is easy to see that
if {X, Y } is a 2-bimodule if and only if {X, Y } is a split, a co-split or a bi-join.
Moreover, if min(|X |, |Y |) > 1 then {X, Y } cannot be both of them in the same
time (since G is prime).

Let l : V → {1, 2} be a 2-labelling. Then s(l) denote the 2-labelling on V such
that for all v ∈ V , s(l)(v) = 1 if and only if l(v) = 2.

Definition 5 (Labelling induced by a 2-bimodule). Let {X, Y } be a 2-
bimodule. We define the labelling l : V → {1, 2} of G induced by {X, Y }. If
|X | = |Y | = 1, then l(x) = 1 and l(y) = 2, where X = {x} and Y = {y}.
If |X | = 1, then l(v) = 1 iff v ∈ N [x]. Similarly if |Y | = 1, then l(v) = 1 iff
v ∈ N [y]. Now we suppose min(|X |, |Y |) > 1. If {X, Y } is a split, then the set of
vertices in X with a neighbour Y and the set of vertices in Y with a neighbour
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in X is labelled 1, others vertices are labelled 2. If {X, Y } is a co-split, then a
labelling of G induced by {X, Y } is a labelling of G induced by the split {X, Y }.
Finally if {X, Y } is a bi-join, l is such that {v ∈ X : l(v) = 1} is a join with
{v ∈ Y : l(v) = 1} and {v ∈ X : l(v) = 2} is a join with {v ∈ Y : l(v) = 2}. Note
that if {X, Y } is a bi-join, then there is two possibles labelling l1 and l2, with
l1 = s(l2). If {X, Y } is a 2-bimodule of G and l a labelling induced by {X, Y },
then every mono-coloured module has size 1 (since G is prime and |V | ≥ 3).

Definition 6 (Good 2-bimodule). A 2-bimodule {X, Y } is good if the graph
G with the labelling induced by {X, Y } is NLC-2 ρ-Free. The following proposi-
tion comes immediately from lemma 2.

Proposition 1. G is NLC-2 if and only if G has a good 2-bimodule.

Lemma 10. If G has a good 2-bimodule {X, Y } which is a split, then G has a
good 2-bimodule which is a strong split.

Proof. There is a node α in the split decomposition tree and we have ∅ � I �

{1, . . . , d(α)} such that {X, Y } = {∪i∈IC
i
α, ∪i�∈IC

i
α}. Let l : V → {1, 2} be

the labelling of G induced by {X, Y }. For all i ∈ {1, . . . , d(α)}, (G[Ci
α], l|Ci

α
) is

NLC-2 ρ-Free (where l|W is the function l restricted at W ).
Let l′ be the 2-labelling of V such that for all i, and v ∈ Ci

α, l(v) = 1 if and
only if v has a neighbour outside of Ci

α. For all i, either l|Ci
α

= l′|Ci
α
, or ∀v ∈ Ci

α,
l(v) = 2. Then for all i, (G[Ci

α], l′|Ci
α
) is NLC-2 ρ-Free, and thus (G, l′) is NLC-2

ρ-Free. Since there is a dominating vertex in the characteristic graph of α, there
is a j such that the labelling induced by the strong split {Cj

α, V \Cj
α} is l′. Thus

the strong split {Cj
α, V \ Cj

α} is good.
Previous lemma on G say that if G has a good 2-bimodule {X, Y } which is a
co-split, then G has a good 2-bimodule which is a strong co-split. The following
lemma is similar to Lemma 10.

Lemma 11. If G has a good 2-bimodule {X, Y } which is a bi-join, then G has
a good 2-bimodule which is a strong bi-join.

Input. A graph G
Result. Yes iff G is NLC-2
S ← the set of strong splits, co-splits and bi-joins of G ;
foreach {X, Y } ∈ S do

l ← the labelling of G induced by {X, Y } ;
if (G[X ], G[Y ], l) is NLC-2 ρ-Free then return Yes ;

return No ;

Algorithm 3. Recognition of prime NLC-2 graphs

Theorem 5. Algorithm 3 recognises prime NLC-2 graphs, and its time com-
plexity is O(n2m).
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Proof. Trivially if the algorithm return Yes, then G is NLC-2. On the other
hand, by proposition 1, and lemmas 10 and 11, if G is NLC-2, then it has a good
strong 2-bimodule and the algorithm returns Yes.

The set S can be computed using algorithms for computing split decomposi-
tion on G and G, and bi-join decomposition on G. Note that it is not required to
use a linear time algorithm for split decomposition [5]: some simpler algorithms
run in O(n2m) [3,10]. [7,8] show that bi-join decomposition can be computed in
linear time, using a reduction to modular decomposition. But there also, mod-
ular decomposition algorithms simpler than [15] may be used. The set S has
O(n) elements. Testing if a 2-bimodule is good takes O(nm) using algorithm 1.
So total running time is O(n2m).

3.3 NLC-2 Decomposition

Using lemma 1, modular decomposition and algorithm 3, we get:

Theorem 6. NLC-2 graphs can be recognised in O(n2m), and a NLC-2 expres-
sion can be generated in the same time.

4 Graph Isomorphism on NLC-2 Graphs

4.1 Graph Isomorphism on NLC-2 ρ-Free Prime Graphs

Proposition 2. Consider a symmetric S ∈ {1, 2} × {1, 2}. Two graphs G and
H are isomorphic if and only if there is a bijection π between PS(G) and PS(H)
such that for all P ∈ PS(G), G[P ] is isomorphic to H [π(P )].

Proposition 3. Let a non-symmetric S ∈ {1, 2}×{1, 2} and let G and H be two
graphs. Let P ′

S(G) = (P1, . . . , Pk) and P ′
S(H) = (P ′

1, . . . , P
′
k′) then G and H are

isomorphic if and only if k = k′ and for all i ∈ {1, . . . , k}, G[Pi] is isomorphic
to H [P ′

i ].

These two propositions are direct consequences of the linear and degenerate
properties of S-cuts. Then two NLC-2 ρ-Free 2-labelled graphs G and H are
isomorphic if and only if there is an isomorphism between their canonical NLC-
2 ρ-Free decomposition tree which respects the order of children of linear nodes.
This isomorphism can be tested in linear time, thus isomorphism of NLC-2 ρ-Free
graphs can be done in O(nm) time.

4.2 Graph Isomorphism on Prime NLC-2 Graphs

Theorem 7. Algorithm 4 test isomorphism between two prime NLC-2 graphs
in time O(n2m).

Proof. If the algorithm returns “yes”, then trivially G 	 H . On the other hand
suppose that G 	 H and let π : V (G) → V (H) be a bijection such that {u, v} ∈
E(G) iff (π(u), π(v)) ∈ E(H). Then {X ′, Y ′} with X ′ = π(X) and Y ′ = π(Y )
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is a good 2-bimodule if H . If min(|X |, |Y |) > 1 and {X ′, Y ′} is a bi-join, then
by definition there is two labelling induced by {X, Y }, and (G, l) 	 (H, l′) or
(G, l) 	 (H, s(l′)). Otherwise the labelling is unique and (G, l) 	 (H, l′).

Input. Two prime NLC-2 graphs G and H
Result. Yes if G 	 H , No otherwise
S ← the set of strong splits, co-splits and bi-joins of G ;
S′ ← the set of strong splits, co-splits and bi-joins of H ;
if there is no good 2-bimodule in S then fail with “G is not NLC-2”;
{X, Y } ← a good 2-bimodule in S ;
l ← the labelling of G induced by {X, Y } ;
foreach {X ′, Y ′} ∈ S′ such that {X ′, Y ′} is good do

l′ ← the labelling of H induced by {X ′, Y ′} ;
if |X | > 1 and |Y | > 1 and {X, Y } is a bi-join then

if (G, l) 	 (H, l′) or (G, l) 	 (H, s(l′)) then return Yes ;
else if (G, l) 	 (H, l′) then return Yes ;

return No ;

Algorithm 4. Isomorphism for prime NLC-2 graphs

The sets S and S′ can be computed in O(n2) time using linear time algorithms
for computing split decomposition on G and G, and bi-join decomposition on G.
The sets S and S′ have O(n) elements. Test if a 2-bimodule is good take O(nm)
using algorithm 1, and test if two 2-labelled prime graphs are isomorphic take
also O(nm). Thus the total running time is O(n2m).

4.3 Graph Isomorphism on NLC-2 Graphs

It is easy to show that graph isomorphism on prime NLC-2 graphs with an
additional labels into {1, . . . , q} can be done in O(n2m) time. For that, we add
the additional label of v at the leaf corresponding to v in the NLC-2 ρ-Free
decomposition tree.

We show that we can do graph isomorphism on NLC-2 graphs in time O(n2m),
using the modular decomposition and algorithm 4. Let M(G) and M(H) be the
modular decomposition of G and H . For M ∈ M(G), let GM be G[M ], and for
M ∈ M(H), let HM be H [M ]. Let G∗

M be the characteristic graph of GM (note
that |V (G∗

M )| is the number of children of M in the modular decomposition
tree). Let M(i,∗) = {M ∈ M(G) ∪ M(H) : |M | = i}, let M(∗,j) = {M ∈
M(G) ∪ M(H) : |V (G∗

M )| = j} and let M(i,j) = M(i,∗) ∩ M(∗,j). Note that
∑n

j=1(|M(∗,j)| × j) is the number of vertices in G plus the number of edges in
the modular decomposition tree, and thus is at most 3n − 2.

Theorem 8. Algorithm 5 tests isomorphism between two NLC-2 graphs in time
O(n2m).

Proof. The correctness comes from the fact that at each step, for all M, M ′ ∈
M(G) ∪ M(H) such that l(M) and l(M ′) are set, GM and GM ′ are isomorphic
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if and only if l(M) = l(M ′). The total time f(n, m) of this algorithm is (“big
O” is omitted): f(n, m) ≤

∑

i

∑

j

(

j2m|M(i,j)|2
)

≤ m
∑

j

(

j2 ∑

i

(

|M(i,j)|2
))

≤
m

∑

j

(

j2|M(∗,j)|2
)

≤ m
∑

j

(

(

j|M(∗,j)|
)2

)

≤ n2m.

Input. Two NLC-2 graphs G and H
Result. Yes if G 	 H , No otherwise
for every M ∈ M(G) ∪ M(H) such that |M | = 1 do l(M) ← 1 ;
for i from 2 to n do

for j from 2 to i do
Compute the partition P of M(i,j) such that M and M ′ are in the
same class of P if and only if (G∗

M , l) 	 (G∗
M ′ , l). ;

foreach P ∈ P do
a ← a new label (an integer not in Img(l)) ;
For all M ∈ P , l(M) ← a ;

Algorithm 5. Isomorphism on NLC-2 graphs

References

1. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Math. 37(1),
35–50 (1981)

2. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)

3. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete
Methods 3(2), 214–228 (1982)

4. Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Canad.
J. Math. 32, 734–765 (1980)

5. Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to
split decomposition and parity graph recognition. J. Algorithms 36(2), 205–240
(2000)

6. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Partially complemented representa-
tions of digraphs. Discrete Math. Theor. Comput. Sci. 5(1), 147–168 (2002)

7. de Montgolfier, F., Rao, M.: The bi-join decomposition. In: ICGT. ENDM, vol. 22,
pp. 173–177 (2005)

8. de Montgolfier, F., Rao, M.: Bipartitives families and the bi-join decomposition.
Technical report (2005), https://hal.archives-ouvertes.fr/hal-00132862

9. Fouquet, J.-L., Giakoumakis, V., Vanherpe, J.-M.: Bipartite graphs totally de-
composable by canonical decomposition. Internat. J. Found. Comput. Sci. 10(4),
513–533 (1999)

10. Gabor, C.P., Supowit, K.J., Hsu, W.-L.: Recognizing circle graphs in polynomial
time. J. ACM 36(3), 435–473 (1989)

11. Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar. 18,
25–66 (1967)

12. Gurski, F., Wanke, E.: Minimizing NLC-width is NP-Complete. In: Kratsch, D.
(ed.) WG 2005. LNCS, vol. 3787, pp. 69–80. Springer, Heidelberg (2005)

https://hal.archives-ouvertes.fr/hal-00132862


98 V. Limouzy, F. de Montgolfier, and M. Rao

13. Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: An interesting
algorithmic tool kit. Internat. J. Found. Comput. Sci. 10(2), 147–170 (1999)
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A Characterisation of the Minimal

Triangulations of Permutation Graphs

Daniel Meister

Institutt for Informatikk, Universitetet i Bergen, 5020 Bergen, Norway

Abstract. A minimal triangulation of a graph is a chordal graph ob-
tained from adding an inclusion-minimal set of edges to the graph. For
permutation graphs, i.e., graphs that are both comparability and cocom-
parability graphs, it is known that minimal triangulations are interval
graphs. We (negatively) answer the question whether every interval graph
is a minimal triangulation of a permutation graph. We give a non-trivial
characterisation of the class of interval graphs that are minimal trian-
gulations of permutation graphs and obtain as a surprising result that
only “a few” interval graphs are minimal triangulations of permutation
graphs.

1 Introduction

For some graph classes, the class of minimal triangulations is known. An early
result shows that minimal triangulations of cographs are trivially perfect graphs
[3]. Since cographs are exactly the P4-free graphs, and trivially perfect graphs are
exactly the P4-free chordal graphs, it follows that every minimal triangulation
of a cograph is a cograph. This result was extended by Parra and Scheffler: for
k ≤ 5, a graph is Pk-free if and only if every of its minimal triangulations is
Pk-free [14]. The cograph result was generalised also in another direction, in
particular to permutation graphs:

Theorem 1 ([2]). Minimal triangulations of permutation graphs are interval
graphs.

Later, it was shown that this result even holds for cocomparability graphs [10]
and AT-free graphs [13]. By the following characterisation, the class of AT-free
graphs is the largest class of graphs containing only graphs whose minimal tri-
angulations are interval graphs: a graph is AT-free if and only if it has only
minimal triangulations that are interval graphs [13], [14]. So, for some graph
classes, minimal triangulations reflect structural properties of the base graphs:
minimal triangulations of Pk-free graphs for k ≤ 5 are Pk-free, minimal tri-
angulations of cocomparability graphs and AT-free graphs are cocomparability
graphs and AT-free graphs, respectively. In all these cases, the base graph class
contains the class of minimal triangulations.

The case of permutation graphs is different. The class of interval graphs is not
contained in the class of permutation graphs, and vice versa. A minimal triangu-
lation of a permutation graph can be a graph that is not a permutation graph.

A. Brandstädt, D. Kratsch, and H. Müller (Eds.): WG 2007, LNCS 4769, pp. 99–108, 2007.
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Fig. 1. Depicted is a permutation graph G, and adding edge be gives an interval graph
that is a minimal triangulation of G. This interval graph is not a permutation graph.

An example is given in Figure 1. On the other hand, not every interval graph can
be a minimal triangulation of a permutation graph. Such an example is depicted
in Figure 4. Thus, the class of minimal triangulations of permutation graphs is
a non-trivial subclass of the class of interval graphs, and the question arises how
this class can be characterised. In this paper, we exactly address this problem.
We give a characterisation of the class of minimal triangulations of permutation
graphs, which even results in a recognition algorithm. This algorithm assumes
the input graph to be given by an interval model and decides then in time linear
in the number of vertices, independent of the number of edges.

Our characterisation is based on minimal separators and potential maximal
cliques. A potential maximal clique is a set of vertices that is a maximal clique in
a minimal triangulation [4]. We define a graph over the set of potential maximal
cliques of a graph in Section 3, which we call the connectors graph, and show
a connection to minimal triangulations. In Sections 4 and 5, we investigate the
structure of these graphs for chordal and permutation graphs. It turns out that
every graph with two isolated vertices can be the connectors graph of a chordal,
even an interval graph and that connectors graphs of permutation graphs have
nice bipartite substructures. In Section 6, we give the final characterisation of the
minimal triangulations of permutation graphs using connectors graphs, estab-
lishing a connection between minimal triangulations of permutation graphs and
bipartite graphs. This result has two interesting implications. The one is that
only a few interval graphs are minimal triangulations of permutation graphs.
The other is the astounding observation that permutation graphs are cocompa-
rability and comparability graphs, and minimal triangulations of permutation
graphs are cocomparability graphs with a comparability (bipartite) structural
property.

Due to space restrictions, proofs are omitted.

2 Graph Preliminaries, Chordal Graphs and Minimal
Triangulations

We only consider simple finite undirected graphs. A graph is a pair G = (V, E)
with V the vertex set and E the edge set. Edges of G are 2-elementary subsets
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of V , and they are denoted as uv where u and v are vertices of G. In this case, u
and v are called adjacent; otherwise, u and v are non-adjacent. Let H = (W, F )
be a graph. We say that G is a subgraph of H , if V ⊆ W and E ⊆ F . If G is not
a proper subgraph of another subgraph of H on the vertex set of G, then G is
called an induced subgraph of H , denoted as G � H . For a set A of vertices of
G, G[A] denotes the subgraph of G induced by A, i.e., G[A] = (A, X) for (A, X)
an induced subgraph of G. Induced paths and cycles and connected components
are defined as usual. For a set S ⊆ V , G \ S denotes the subgraph of G induced
by V \S. Let a and b be vertices of G. A set S of vertices of G is an a, b-separator
of G, if a and b are contained in different connected components of G \ S. If no
proper subset of S is an a, b-separator of G, S is a minimal a, b-separator of G.
A minimal separator of G is a minimal a, b-separator of G for some vertices a
and b.

A graph is called chordal, if it does not contain an induced cycle of length
greater than 3. Chordal graphs are exactly the graphs whose minimal separators
all are cliques [6]. Let G = (V, E) be a graph. A tree T is a clique-tree for G, if it
has a vertex for every maximal clique of G and for every pair C′, C′′ of maximal
cliques of G, every clique corresponding to a vertex on the path in T between the
vertices corresponding to C′ and C′′ contains the vertices in C′ ∩ C′′. A graph
is chordal if and only if it has a clique-tree [5], [7], [16].

Theorem 2 ([1]). Let G = (V, E) be a chordal graph, and let T be a clique-tree
for G. Then, a set S of vertices of G is a minimal separator of G if and only if
there are maximal cliques C′ and C′′ of G that are neighbours with respect to T
such that S = C′ ∩ C′′.

A graph H on the vertex set of G is a triangulation of G, if H is chordal and
contains G as a subgraph. If no proper subgraph of H is a triangulation of G then
H is a minimal triangulation of G. An easy polynomial-time test for minimal
triangulation is based on the following result: Let G and H be two graphs on
the same vertex set. Then, H is a minimal triangulation of G if and only if G
is a subgraph of H , H is chordal and H−e is not chordal for every edge e of H
not contained in G [15].

Theorem 3 ([11]). Let G = (V, E) be a graph. A set S of vertices of G is a
minimal separator of G if and only if S is a minimal separator of a minimal
triangulation of G.

Interval graphs are defined as the intersection graphs of families of closed inter-
vals of the real line in the following sense: given a family of closed intervals of
the real line, the obtained interval graph has a vertex for every interval, and two
vertices are adjacent if and only if the corresponding intervals have a non-empty
intersection. Such a family of intervals is also called an interval model for an
interval graph. Alternatively, a graph is an interval graph if and only if it has a
clique-tree that is a path [8], and such an alignment of the maximal cliques is
called consecutive clique arrangement.
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3 An Invariant for Minimal Triangulations

In some sense, it is well understood how minimal triangulations are related to the
corresponding base graphs. Several characterisation results are known. But only
a few is known about structures of minimal triangulations that are “inherited”
from the base graph. We identify a structural graph property that is inherited
by its minimal triangulations. Let G = (V, E) be a graph. A set C of vertices
of G is called a potential maximal clique of G, if C is a maximal clique in a
minimal triangulation of G. By definition, the potential maximal cliques of a
chordal graph are the maximal cliques of the chordal graph. Potential maximal
cliques were introduced by Bouchitté and Todinca [4]. Potential maximal cliques
contain minimal separators of the graph.

Definition 1. Let G = (V, E) be a graph. A potential maximal clique C of G
is called a connector if and only if there is a plug pair for C, which is a
pair [a, b] of vertices in C such that there are two minimal separators S′ and
S′′ of G contained in C such that a ∈ S′ and b ∈ S′′ and there is no minimal
separator of G contained in C that contains a and b.

For a plug pair, we write [a, b] instead of (a, b) to emphasise that there is no
inherent order of the vertices. For a given graph, not every pair of vertices
constitutes a plug pair.

Lemma 1. Let G = (V, E) be a graph. Let [a, b] be a plug pair for a potential
maximal clique C of G. Then, a and b are adjacent in G.

Based on connectors and plug pairs, we are interested in the question how con-
nectors are related to each other. For expressing such a relation, we define the
so-called connectors graph using plug pairs. Let G = (V, E) be a graph. The
connectors graph of G, denoted as con(G), is defined as follows:

(vc) con(G) contains a vertex for every potential maximal clique of G
(ec) uv is an edge of con(G) if and only if the potential maximal cliques Au

and Av are connectors and there are vertices a, b, c such that [a, b] and
[b, c] are plug pairs for Au and Av, respectively.

The vertices of a connectors graph are associated with the corresponding poten-
tial maximal cliques, which can be considered as the names of the vertices. We
are interested in the relationship between the connectors graphs of a graph and
its minimal triangulations.

Bouchitté and Todinca showed a strong correspondence between the minimal
separators of a graph and of its minimal triangulations [4]. In fact, this result is
an extention of Theorem 3.

Theorem 4 ([4]). Let G = (V, E) be a graph and let H be a minimal trian-
gulation of G. Let C be a maximal clique of H. Then, a set S of vertices is a
minimal separator of H contained in C if and only if S is a minimal separator
of G contained in C.

Corollary 1. Let G = (V, E) be a graph, and let H be a minimal triangulation
of G. Then, con(H) � con(G).
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4 Connectors Graphs of Chordal Graphs

Mainly, we are interested in the construction and structural properties of con-
nectors graphs of chordal graphs. First, we show that the connectors graph of
a chordal graph can be constructed from a clique-tree. Here, it is important to
verify that the necessary properties are invariant with respect to clique-trees.

Lemma 2. Let G = (V, E) be a chordal graph. Let C be a maximal clique of G
and let [a, b] be a pair of vertices of G.

1. If [a, b] is a plug pair for C then for every clique-tree T for G, there are two
maximal cliques C′ and C′′ of G such that C′ and C′′ are neighbours of C
with respect to T and a ∈ C ∩ C′ and b ∈ C ∩ C′′ and no maximal clique of
G except for C contains a and b.

2. Let T be a clique-tree for G. If there are two maximal cliques C′ and C′′ of
G such that C′ and C′′ are neighbours of C with respect to T and a ∈ C ∩C′

and b ∈ C ∩ C′′ and no maximal clique of G except for C contains a and b,
then [a, b] is a plug pair for C.

The main result of this section shows that connectors graphs of interval graphs
can have any structure. We prove this statement by giving a concrete construc-
tion. A vertex of a graph is called isolated, if it does not have any neighbour.

Theorem 5. Let G = (V, E) be a graph with two isolated vertices. Then, there
is an interval graph whose connectors graph is (isomorphic to) G.

We see that connectors graphs of well-known chordal graph classes have no
special property. This is an important property of connectors graphs, since they
are made for analysing minimal triangulations of non-chordal graphs. So, any
structural property of the connectors graphs of a considered graph class may
yield a non-trivial result about the structure of the minimal triangulations. To
complete Theorem 5, note that every chordal graph that is not complete has two
maximal cliques that are not connectors.

5 Connectors Graphs of Permutation Graphs

Let M be a finite set of size n, and let σ1 and σ2 be two orderings over M . The
graph on M defined by σ1 and σ2 has a vertex for every element of M , and two
vertices of M are adjacent if and only if the corresponding elements are ordered
differently by σ1 and σ2. Considering σ1 and σ2 as binary relations, the edge set
of the defined graph corresponds to the complement of the intersection, σ1 ∩ σ2.
Graphs defined in this way are called permutation graphs, and we denote the
graph defined by the pair (σ1, σ2) as G(σ1, σ2). With a permutation graph, we
associate a so-called permutation diagram: on two horizontal lines, mark points
for each vertex and label the points with the names of the vertices in order
defined by σ1 for the upper line and σ2 for the lower line. Connect the two
points with the same label by a line segment. It is an easy property that two
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vertices of the permutation graph are adjacent if and only if the corresponding
line segments of the permutation diagram intersect. For further information on
permutation graphs and diagrams, we refer to the book by Golumbic [9]. Our
results are best understood using permutation diagrams as representation models
for permutation graphs.

For studying potential maximal cliques of permutation graphs, minimal sep-
aration lines are the best means. Let G = G(σ1, σ2) be a permutation graph on
n vertices. A separation line s of G is a pair (a, e) where a, e ∈ { 1

2 , 1 1
2 , . . . , n 1

2}.
Separation lines for permutation graphs were introduced by Bodlaender, Kloks,
Kratsch [2] (under the name scanlines). Let s1 = (a1, e1) and s2 = (a2, e2) be
two separation lines of G. If a1 ≤ a2 and e1 ≤ e2, we also write s1 ≤ s2; if s1 ≤ s2
and s1 �= s2, we write s1 < s2. Let σ1 = 〈x1, . . . , xn〉 and σ2 = 〈xπ(1), . . . , xπ(n)〉
for some permutation π over {1, . . . , n}. Separation line (a, e) crosses vertex xi,
if either i < a or π−1(i) < e. The set of vertices crossed by s is denoted as int(s).
If i < a and xi is not crossed by s, then xi is to the left of s; if i > a and xi is not
crossed by s, then xi is to the right of s. For s1 and s2 and vertex x, if s1 < s2
and x is to the left of s2 and to the right of s1, we say that x is between s1 and
s2. If {xi : i ∈ {a − 1

2 , a 1
2 , π(e − 1

2 ), π(e 1
2 )}} ∩ int(s) = ∅, s is called a minimal

separation line of G. Note that the first set may contain between one and four
vertices. If s1 and s2 are minimal separation lines of G and s1 < s2 and there
is no minimal separation line t of G such that s1 < t < s2, then s2 is called a
successor of s1.

Theorem 6 ([12]). Let G = G(σ1, σ2) be a permutation graph. Let C be a set
of vertices of G. Then, C is a potential maximal clique of G if and only if there is
a pair of minimal separation lines of G, s1 and s2, such that s2 is a successor of
s1 and C is equal to the union of int(s1)∪ int(s2) and the set of vertices between
s1 and s2. Separation lines s1 and s2 are unique for C.

In this section, every potential maximal clique of a permutation graph is associ-
ated with a pair of minimal separation lines that define the potential maximal
clique in the sense of Theorem 6. Let G = G(σ1, σ2) be a permutation graph. Let
s1 and s2 be minimal separation lines of G where s2 is a successor of s1. Then,
we define L(s1, s2) =def int(s1) \ int(s2) and R(s1, s2) =def int(s2) \ int(s1).

Lemma 3. Let G = G(σ1, σ2) be a permutation graph. Let C be a potential
maximal clique of G defined by the pair (s1, s2) of minimal separation lines of
G where s2 is a successor of s1. Then, [a, b] is a plug pair for C if and only if
a ∈ L(s1, s2) and b ∈ R(s1, s2) or b ∈ L(s1, s2) and a ∈ R(s1, s2).

Using Lemma 3, the connectors graph of a permutation graph can be generated
easily. The same lemma and the definition of permutation diagrams justify the
following definition.

Definition 2. Let G = G(σ1, σ2) be a permutation graph. Let C be a potential
maximal clique of G defined by the pair (s1, s2) of minimal separation lines of
G where s2 is a successor of s1. Let C be a connector, and let [a, b] be a plug
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Fig. 2. The figure shows the two possible situations for the vertices of a plug pair [a, b]
in a connector of a permutation graph. The vertical lines represent the two minimal
separation lines defining the connector. The left hand figure illustrates the case when
vertices a and b meet at the top whereas a and b meet at the bottom in the right hand
figure.

pair for C where we assume a ∈ L(s1, s2) and b ∈ R(s1, s2). We say that a and
b meet at the top if and only if b ≺σ1 a. Otherwise, we say that a and b meet
at the bottom.

From Lemma 1, we know that the vertices of a plug pair are adjacent. Taking
into account this fact, the definition of “meeting at the top/bottom” has a clear
geometric representation. It is illustrated in Figure 2. We show now that “meet-
ing at the top/bottom” is a property of the connector, not only of a single plug
pair.

Lemma 4. Let G = G(σ1, σ2) be a permutation graph. Let C be a connector of
G. Then, there is a plug pair [a, b] for C such that a and b meet at the top if and
only if for every plug pair [c, d] for C, c and d meet at the top.

Lemma 4 motivates the following definition for connectors.

Definition 3. Let G = G(σ1, σ2) be a permutation graph. Let C be a connector
of G. We say that C is oriented to the top if and only if there is a plug
pair [a, b] for C such that a and b meet at the top. Otherwise, we say that C is
oriented to the bottom.

Let G = G(σ1, σ2) be a permutation graph. For two connectors A and B of G, we
write A ‖ B, if both A and B are oriented to the top or to the bottom; otherwise,
we write A ⊥ B. The following lemma presents the crucial property from which
we will derive our main result in this section. Let A and B be potential maximal
cliques of G defined by pairs (s1, s2) and (t1, t2) of minimal separation lines of
G, respectively. Let s2 and t2 be successors of s1 and t1, respectively. We say
that A and B are parallel, if s1 < s2 ≤ t1 < t2 or t1 < t2 ≤ s1 < s2.

Lemma 5. Let G = G(σ1, σ2) be a permutation graph. Let A and B be parallel
connectors of G. Let [a, b] be a plug pair for A and let [b, c] be a plug pair for B.
Then, A ⊥ B.

It would be nice, if the prerequisite of parallel connectors in Lemma 5 was not
necessary. But a simple example shows that the statement does not hold for
non-parallel connectors in general (Figure 3).

Our main result for permutation graphs:
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1 2 3 4 5 6 7 8
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Fig. 3. Depicted is a permutation diagram of a permutation graph on eight vertices.
The dotted and the thick line segments represent the minimal separation lines.

Theorem 7. Let G = G(σ1, σ2) be a permutation graph. Let S be a set of
vertices of the connectors graph con(G) of G that correspond to pairwise parallel
potential maximal cliques. Then, S induces a bipartite subgraph of con(G).

Note that Theorem 7 does not make a statement about the structure of the
whole connectors graph.

6 Characterising Minimal Triangulations of Permutation
Graphs

It is known that minimal triangulations of permutation graphs are interval
graphs (Theorem 1). Figure 4 depicts an interval graph H that is not a minimal
triangulation of a permutation graph. So, which interval graphs are minimal tri-
angulations of permutation graphs? We give the first characterisation of the class
of interval graphs that are minimal triangulations of permutation graphs. The
proof consists of two parts: combining the results of the previous sections, we
can exclude a large number of interval graphs from this class, and for showing
that the remaining interval graphs are minimal triangulations of permutation
graphs, we construct a witness (a permutation graph). The proof also relies on
the following theorem, that characterises the set of minimal triangulations of a
single permutation graph.

Theorem 8 ([12]). Let G = G(σ1, σ2) be a permutation graph, and let H be a
chordal graph on the vertex set of G. Then, H is a minimal triangulation of G if
and only if the set of maximal cliques of G is a maximal set of pairwise parallel
potential maximal cliques of G.

Theorem 9. Let H = (V, E) be an interval graph. Then, H is a minimal tri-
angulation of a permutation graph if and only if con(H) is bipartite.

Theorem 9 implies a fast algorithm for recognising the class of minimal trian-
gulations of permutation graphs. We can also use the algorithm of the proof of
Theorem 9 to construct a permutation graph witnessing that an input interval
graph is indeed a minimal triangulation of a permutation graph. Our algorithms
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Fig. 4. The depicted graph H is an interval graph and minimal triangulation of the
graphs H , H−aw, H−ax, H−aw, ax. None of the four graphs is a permutation graph,
which can be verified easily, since a chordless path on six vertices has an almost unique
representation in the permutation diagram.

require the input graph to be given by an interval model. Then, the algorithms
take time only proportional in the number of vertices. We call such a running
time vertex-linear.

Corollary 2. There is a vertex-linear-time algorithm deciding the following
question: given an interval graph H represented by an interval model, is H a
minimal triangulation of a permutation graph. In the positive case, the algo-
rithm outputs a permutation graph G represented by a permutation diagram and
a set of pairwise non-intersecting minimal separation lines proving that H is a
minimal triangulation of G.

7 Final Remarks

We gave a characterisation of the minimal triangulations of permutation graphs.
This characterisation is based on connectors graphs, that were introduced here,
and shows a connection between interval graphs that are minimal triangulations
of permutation graphs and bipartite graphs. This result also implies a state-
ment about the number of interval graphs that are minimal triangulations of
permutation graphs. Even though there is not much known about connectors
graphs of interval graphs, it seems quite natural to assume that interval graphs
are equally distributed among the connectors graphs. And if we accept that the
class of bipartite graphs is only a small, nevertheless important, graph class, we
can conclude that only “a few” interval graphs can be minimal triangulations of
permutation graphs.

Finding a characterisation of the class of minimal triangulations of permuta-
tion graphs was a non-trivial and interesting task, since the class of permuta-
tion graphs does not contain the class of minimal triangulations of permutation
graphs. Other graph classes with this property are the class of P6-free graphs
[14] and the class of gem-free graphs. The gem is a minimal triangulation of the
C5. The most natural such graph class, however, is the class of comparability
graphs. The question is whether our techniques can be applied to these or similar
graph classes to obtain results about the classes of their minimal triangulations.
One step could be to identify structural properties that are preserved during the
filling process.
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Abstract. For a graph G and a positive integer k, the k-power of G is
the graph Gk with V (G) as its vertex set and {(u, v)|u, v ∈ V (G), dG

(u, v) ≤ k} as its edge set where dG(u, v) is the distance between u
and v in graph G. The k-Steiner root problem on a graph G asks for
a tree T with V (G) ⊆ V (T ) and G is the subgraph of T k induced by
V (G). If such a tree T exists, we call it a k-Steiner root of G. This paper
gives a linear time algorithm for the 3-Steiner root problem. Consider
an unrooted tree T with leaves one-to-one labeled by the elements of a
set V . The k-leaf power of T is a graph, denoted T k

L, with T k
L = (V, E),

where E = {(u, v) | u, v ∈ V and dT (u, v) ≤ k}. We call T a k-leaf root
of T k

L . The k-leaf power recognition problem is to decide whether a graph
has such a k-leaf root. The complexity of this problem is still open for
k ≥ 5 [6]. It can be solved in polynomial time if the (k − 2)-Steiner root
problem can be solved in polynomial time [6]. Our result implies that the
k-leaf power recognition problem can be solved in linear time for k = 5.

Keywords: Tree power, tree root, Steiner root, leaf power, efficient al-
gorithm.

1 Introduction

For a graph G, let V (G) and E(G) be the vertex and edge sets of G, respectively.
For x, y ∈ V (G), the distance between x and y in G, denoted by dG(x, y), is the
length of a shortest path from x to y in G. The k-power of a graph G is the
graph Gk with V (Gk) = V (G) and E(Gk) = {(u, v)|u, v ∈ V (G), dG(u, v) ≤ k}.
Reversely, G is called a k-root of Gk. Deciding whether a graph G is a power of
some other graph H is called the graph root problem. When H is required to be
a tree and the power k is specified, the problem is called the k-tree root problem
and H is called the k-tree root of G. Kearney and Corneil showed that the
problem can be solved in O(n3) time [14]. The result was improved to O(n+m)
by Chang, Ko, and Lu [2].

Consider an unrooted tree T with leaf set V . The k-leaf power of T is a graph, de-
noted as T k

L, with V (T k
L) = V and E(T k

L) = {(u, v) | u, v ∈ V and dT (u, v) ≤ k}.
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Fig. 1. (a)A graph G, (b)A 3-Steiner root T of G

We call T a k-leaf root of T k
L. The k-leaf power recognition problem is to decide

whether a graph has such a k-leaf root. While requiring that all internal nodes
of a k-leaf root have degrees at least three, the k-leaf power recognition problem
becomes the k-phylogenetic root problem and such a k-leaf root is called a k-
phylogenetic root of G. These two problems were studied in [1,4,5,15,10,11,12,13].
Nishimura et. al. showed that the k-leaf power recognition problem can be solved
in O(|V |3) time for k ≤ 4 [15]. Lin et. al. showed that the k-phylogenetic root
problem can be solved in O(|V |+ |E|) time for k ≤ 4 [13]. Under the assumption
that the maximum degree of the phylogenetic root is bounded from above by a
constant, there is a linear-time algorithm that determines whether a graph has
a k-phylogenetic root for arbitrary k [4,5]. The complexity of the k-leaf power
recognition problem is still open for k ≥ 5 [7]. Special cases of the problem with
k = 5 were studied in [10,12].

A tree T is called a Steiner tree of vertex set V if V ⊆ V (T ). Given a graph
G and positive integer k, the k-Steiner root problem asks for a Steiner tree T
of V (G) such that G is the subgraph of T k induced by V (G). If such a tree
T exists, it is called a k-Steiner root of G. For a graph G, denote the set of
k-Steiner roots of G by SRk(G). A graph and a 3-Steiner root of the graph are
shown in Figure 1(a) and (b) respectively. This problem was first studied in [13],
and can be solved in linear time for k ≤ 3 [1,13]. But it remains open for k ≥ 3.

This paper gives a linear time algorithm for the 3-Steiner root problem. The
k-leaf power recognition problem can be solved in polynomial time if the (k−2)-
Steiner root problem can be solved in polynomial time [6]. Our result implies
that the k-leaf power recognition problem can be solved in linear time for k = 5.

2 Preliminaries

For any set S, let |S| denote the cardinality of S. All graphs in this paper
are undirected and simple, and have no self-loops. Let NG(v) denote the set of
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neighbors of v in graph G and NG[v] denote NG(v) ∪ {v}. For a subset W ⊆ V ,
NG(W ) denotes

⋃

x∈W NG(x) \ W . For a subset U of V (G), define G − U to be
the subgraph of G induced by V (G)\U , i.e., G−U = G[V (G)\U ]. For X ⊂ V (G)
and y ∈ V (G) \ X , the distance between X and y, denoted by dG(y, X), is the
minimum among distances between y and vertices in X . For two subsets X and
Y of V (G), the distance dG(X, Y ) in graph G between X and Y is the minimum
distance dG(x, y) in G between a vertex x ∈ X and another vertex y ∈ Y . A
separator of a connected graph G is a subset S of V (G) such that G − S has at
least two components. A separator S is a u-v separator if vertices u and v are
in different connected components of G − S. A separator (u-v separator resp.)
S is minimal if no proper subset of S is a separator (u-v separator resp.). A
minimal vertex separator is a minimal u-v separator for some u and v. Note that
a minimal vertex separator is not necessarily a minimal separator, as a minimal
u-v separator may contain a minimal x-y separator for some other pair of vertices
x, y. A minimal vertex separator S of G is of type 1, type 2, or type 3 if |S| = 1,
|S| = 2, or |S| ≥ 3, respectively. For a subset X of V (G), Δ(X) denote the set
of minimal vertex separators in G contained in X ⊆ V (G).

Definition 1. The eccentricity ε(v) of a vertex v in a connected graph G is
maxu∈V (G) dG(u, v). The radius γ(G) is the minimum eccentricity of the vertices.
The diameter δ(G) is the maximum eccentricity of the vertices. A vertex v is a
central vertex if ε(v) = γ(G), and the center of G, denoted by C(G), is the set
of all central vertices.

Note that δ(G), the diameter of G, is the length of the longest induced path in
G. The center of a tree is consisting of either a vertex or two adjacent vertices [8].
Furthermore, the center of a tree T consists of a vertex if and only if δ(T ) is
even and two adjacent vertices if and only if δ(T ) is odd. A tree T is called a
vertex if δ(T ) = 0, an edge if δ(T ) = 1, a star if δ(T ) = 2, and a conjoined
star if δ(T ) = 3. In a star T , let a be the central vertex of T . Then E(T ) =
{(a, x)|x ∈ V (T ) \ a}. The star T is represented by (a, V (T ) \ a). In a conjoined
star T , let a and b be the central vertices of T , Sa = NT (a) \ b, Sb = NT (b) \ a.
Then Sa and Sb are disjoint subsets of vertices such that Sa ∪Sb = V (T )\ {a, b}
and E(T ) = {(a, b)} ∪ {(a, x)|x ∈ Sa} ∪ {(b, y)|y ∈ Sb}. The conjoined star is
represented by (a, Sa, b, Sb). A branch at a vertex u of a tree T is a maximal
subtree containing u as a leaf. Thus the number of branches at u is the degree
of u.

A graph G is chordal if it contains no induced subgraph which is a cycle of
size greater than three. In other words, G is chordal if every cycle of length at
least four has a chord, i.e., an edge between two nonconsecutive vertices of the
cycle. Since any induced subgraph of a chordal graph is still a chordal graph and
any power of a tree is a chordal graph, any graph having Steiner roots is chordal.
Namely, for a graph G, if SRk(G) �= ∅ for some k ≥ 0, then G is chordal. Thus,
in the rest of paper, we only consider chordal graphs. Chordal graphs have been
extensively studied [9].
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3 Sketch of the Algorithm

Let T be a k-Steiner root of graph G. We call the vertices and edges of T tree
vertices and tree edges, respectively. The vertices in V (G) and V (T ) \ V (G)
are called real vertices and Steiner vertices, respectively. For a set S of tree
vertices, we use Real(S) to denote the set of real vertices in S. Let X and Y be
subsets of V (T ) and V (G), respectively. We use T [X ] to denote the subgraph
(a forest) of T induced by X . We use T (Y ) to denote the minimal subtree of T
containing Y . Actually, T (Y ) is the subtree T ′ of T satisfying the conditions that
Real(V (T ′)) = Y and all leaves of T ′ are real vertices. Let S be any minimal
vertex separator of G and K be any maximal clique of G. If T (S) is a star,
its topology is represented by (a, S \ a), where a is the central vertex of T (S).
When a is a Steiner vertex, the topology is denoted as (β, S), where β denotes a
generic Steiner vertex. If T (K) is a conjoined star, let its two central vertices of
be a and b, where a and b can be Steiner vertices. Let Sa = Real(NT (a) \ {b})
and Sb = Real(NT (b) \ {a}). Then Sa ∪ Sb ∪ Real({a, b}) = K. The topology
of T (K) is represented by (a, Sa, b, Sb). We refer to edge (a, b) as the central
edges of T (K). Please refer to Figure 1(b) for examples. A bold edge in tree
T of Figure 1(b) is the central edge of T (K) of some maximal clique K of G.
For instance, K8 = {v3, v6, v9, v14, v15, v16}, T (K8) is a conjoined stars, and the
central edge of T (K8) is (v14, β) where β is a Steiner vertex.

In the following, α and β are generic Steiner vertices. A minimal vertex sepa-
rator S ⊂ K is maximal with respect to K if S is not properly contained in any
other minimal vertex separator contained in K. A minimal vertex separator is
maximal if it is maximal with respect to every maximal clique containing it.

Lemma 1. Suppose G is connected and has a 3-Steiner root T . Let S and K
be a minimal vertex separator and a maximal clique of G, respectively. Let N1,
N2, and N3 denote the set of minimal vertex separators of type 1, type 2, and
type 3, contained in K. Let N a

2 denote the set of the minimal vertex separators
in N2 containing vertex a. The following observations on topologies of T (S) and
T (K) are correct:

1. T (S) is a star, an edge or a vertex; and T (K) is a conjoined star, a star, or
an edge.

2. If S is of type 2 and S is not maximal, then T (S) is an edge.
3. If T (K) is a star, then all minimal vertex separators contained in K are of

type 1 or type 2. Besides there is a vertex a ∈ K such that N2 = N a
2 .

4. If S is of type 3, then T (S) is a star.
5. If S ⊂ K and T (S) is a star, then T (K) is a conjoined star and the central

vertex of T (S) is one of the central vertices of T (K).
6. For any 3-Steiner root T of G there is at most one minimal vertex separator

S of type 2 in Δ(K) with T (S) not an edge.
7. If N2 is nonempty, then, either there are two vertices a, b ∈ K such that

N a
2 �= ∅, N b

2 �= ∅ N a
2 ∩ N b

2 = ∅ and N a
2 ∪ N b

2 = N2, or there is a vertex
a ∈ K such that N2 = N a

2 .
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8. A maximal clique of G contains at most two minimal vertex separators of
type 3. If K contains two minimal vertex separators A and B of type 3, then
K = A ∪ B, |A ∩ B| ≤ 2, and for every S′ ∈ Δ(K) \ {A, B}, S′ ⊂ A or
S′ ⊂ B.

Two graphs G1 and G2 share a vertex set X if V (G1)∩V (G2) = X and G1[X ] =
G2[X ]. For two graphs G1 and G2 sharing a vertex set X , the join graph of G1
and G2 at X , denoted as G1

⊕

X G2, or G1
⊕

G2 if X is clear, is the graph with
V (G1) ∪ V (G2) as the vertex set and with E(G1) ∪ E(G2) as the edge set. Note
that the subgraph of G1

⊕

X G2 induced by V (G1) (V (G2) resp.) is exactly G1
(G2 resp.).

Definition 2. Suppose G1 and G2 share a clique S and both G1 and G2 have
3-Steiner roots. Let T1 and T2 be 3-Steiner roots of G1 and G2, respectively.
We say that T1 and T2 are compatible if and only if one of the following four
conditions is satisfied:

– |S| = 1.
– |S| = 2 and both T1(S) and T2(S) are an edge.
– Both T1(S) and T2(S) are stars and the central vertices of T1(S) and T2(S)

are a common vertex in S.
– Both T1(S) and T2(S) are stars and both central vertices of T1(S) and T2(S)

are Steiner vertices.

For two compatible 3-Steiner roots T1 and T2 of G1 and G2 sharing a clique S,
respectively, define the join Steiner tree of T1 and T2 at S, denoted as T1

⊙

S T2
or as T1

⊙

T2 if S is clear, as follows: First identify the two central vertices
of T1(S) and T2(S) if both T1(S) and T2(S) are stars and both central ver-
tices of T1(S) and T2(S) are Steiner vertices. Now T1 and T2 share a vertex set
V (T1(S)) = V (T2(S)). Then let T1

⊙

S T2 = T1
⊕

V (T1(S)) T2.

Immediately following the above definition we have the following lemma.

Lemma 2. Suppose G1 and G2 share a clique S and both G1 and G2 have 3-
Steiner roots. Let T1 and T2 be 3-Steiner roots of G1 and G2, respectively. If
T1 and T2 are compatible and T = T1

⊙

S T2 has the property that dT (V (G1) \
S, V (G2) \ S) > 3, then T is a 3-Steiner root of G1

⊕

S G2.

Let G = (V, E) be a connected chordal graph and K̄ be a maximal clique of G.
A decomposition tree of G with respect to K̄, denoted by D(G, K̄), is recursively
defined as follows. Every node H of a decomposition tree is associated with a
5-tuple (HG, HV , HK , HC , HS). Decomposition tree D(G, K̄) is a rooted tree
rooted at node R with RG = G, RV = V , RK = K̄, RC = V , and RS = ∅.
Node H has no child if HG is a clique. Suppose HG is not a clique and HG −HK

has k components. Let HG[C1], HG[C2], . . . , HG[Ck] be the k components of
HG − HK . Let Si = NG(Ci) and Vi = Ci ∪ Si for 1 ≤ i ≤ k. Clearly Si is a
proper subset of HK and is a minimal vertex separator of G for 1 ≤ i ≤ k. Let
Ki be a maximal clique of G such that Si ⊂ Ki and Ki ⊆ Vi for 1 ≤ i ≤ k.
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Fig. 2. A decomposition tree D(G, K̄}) of graph G shown in Figure 1(a) where K̄ =
{v3, v6, v9, v14, v15, v16}. Each circle represents a node of the decomposition tree. The
set of vertices in the circle of a node H is HK , a maximal clique of G. For example,
(H1)K = {v9, v10, v12, v13}.

Then H has k child nodes H1, H2, . . . , Hk with (Hi)V = Vi, (Hi)G = G[Vi],
(Hi)K = Ki, (Hi)S = Si, and (Hi)C = Ci for 1 ≤ i ≤ k. Figure 2 shows
a decomposition tree of graph G shown in Figure 1(a). Since G is a chordal
graph, each node H of D(G, K̄) corresponds to a maximal clique HK of G.
Each edge (H, Ĥ) of D(G, K̄), where Ĥ is a child node of H , corresponds to
a minimal vertex separator ĤS = NG(ĤC) = HK ∩ ĤK of G. Let DH be the
subtree of D(G, K̄) rooted at node H and V (DH) be the set of nodes of DH .
Then HV =

⋃

Ĥ∈V (DH) ĤK . In fact, a decomposition tree of a chordal graph is
a special clique tree.

Now we are ready to describe the algorithm for determining whether a con-
nected chordal graph having a 3-Steiner root. The algorithm arbitrarily selects a
maximal clique K̄ of G and constructs a decomposition tree D(G, K̄) of G with
respect to K̄. Then for each node H of D(G, K̄) perform the following opera-
tions in the ordering from leaves up to the root in a dynamic programming way:
Firstly compute a set P(H) of topologies of HK . Next compute a set T (H) of
3-Steiner roots of HG. Initially T (H) is empty. For each topology Γ in P(H) the
algorithm tries to constructs a 3-Steiner root Υ of HG such that Υ (HK) = Γ . If
it constructs such a tree successfully, includes it in T (H). If T (H) is empty after
all topologies in P(H) are considered, then G has no 3-Steiner root and stop. If
T (R), where R is the root of D(G, K̄), is not empty after all nodes of D(G, K̄)
are considered, then G has a 3-Steiner root and any tree in T (R) is a 3-Steiner
root of G. Otherwise G has no 3-Steiner root.

Suppose T is a 3-Steiner root of G, H is a node of D(G, K̄), and Ĥ is a
child node of H . Obviously ĤG and G[HK ] share ĤS and T (ĤV ) and T (HK)
are compatible. Suppose Ĥ1, Ĥ2, . . . , Ĥh are child nodes of H . Then T (HV ) =
T (HK)

⊙

(Ĥ1)S
T ((Ĥ1)V ) · · ·

⊙

(Ĥh)S
T ((Ĥh)V ). Given a topology Γ of HK , Al-

gorithm 1 builts a 3-Steiner root Υ of HG with that Υ (HK) = Γ by selecting
a tree Π from T (Ĥi) for each child node Ĥi and joining them with Γ by

⊙

operation. Please refer to Algorithm 1 for details.
The ideas behind the algorithm are two heuristic rules: Firstly, the algorithm

chooses those topologies Γ of HK to be included in P(H) satisfying the condition
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that the vertices of HK are away from each other in Γ as far as possible according
to the decomposition tree. Secondly, when building a 3-Steiner root Υ of HG with
Υ (HK) = Γ Algorithm 1 builds one satisfying the condition that for each child
node Ĥ of H the distance dΥ (ĤC , HK \ ĤS) is the largest among all 3-Steiner
roots of HG with Υ (Ĥ) = Γ (Ĥ). When choosing a tree Π from T (Ĥ) of a child
node Ĥ of H we select one satisfying the conditions that Π(ĤS) = Γ (ĤS) and
the distance dT (ĤC , HK \ĤS) between ĤC and HK \ĤS in tree T = Γ

⊙

ĤS
Π is

the largest. These two heuristic rules are inspired by the following observations.
For a node H with |HS | = 1, define λ∗(H) to be the maximum distance

dΥ (v, HC), where v is the only vertex in HS , among all 3-Steiner roots Υ of HG

and define Υ ∗(H) to be a 3-Steiner root Υ of HG with dΥ (v, HC) = λ(H). Notice
that 1 ≤ λ∗(H) ≤ 3. It is straightforward to verify that if G has a 3-Steiner root
then G has a 3-Steiner root T such that T (HV ) = Υ ∗(H).

For a node H with |HS | = 2, either T (HS) is a star with a Steiner central
vertex or T (HS) is an edge in any 3-Steiner root T of G. Suppose |HS | = 2.
Let Υstar(H) be a 3-Steiner root of HG such that both vertices in HS are leaves
of Υstar(H) and the distance λstar(H) = dΥstar(H)(HC , HS) between HS and
HC in tree Υstar(H) is the maximum among all distances between HS and HC

in all 3-Steiner roots of HG. We observe that G has a 3-Steiner root T with
T (HV ) = Υstar(H) if G has a 3-Steiner root T ′ with T ′(HS) being a star.
Assume that HS = {a, b} and H∗ is the parent node of H . Suppose T is a
3-Steiner root of G with that T (HS) is an edge. If b is a leaf of T (HV ), and
dT (HV )(HS , HC) = 1, then for any sibling node H ′ of H with H ′

S = HS , a is
a leaf of T (H ′

V ) and dT (H′
V )(H ′

S , H ′
C) = 2. Besides, dT (H∗

K)(HS , H∗
K \ HS) > 1.

Similarly, if dT (H∗
K)(HS , H∗

K \ HS) = 1 and b is a central vertex and a is a leaf
of T (H∗

K), then for all child node H ′ of H∗, b is a leaf and dT (H′
V )(H ′

S , H ′
C) > 1.

Now consider a node H with |HS | > 2. For a topology S of HS , define Υ (H, S)
be a 3-Steiner root Π of HG with that Π(HS) = S and the distance dΠ(HS , HC)
between HS and HC in Π is maximum among distances between HS and HC

in all 3-Steiner roots Π ′ of HG with Π ′(HS) = S. It is straightforward to verify
that if G has a 3-Steiner root T with T (HS) = S, then G has a 3-Steiner root
T such that T (HV ) = Υ (H, S).
The correctness of the algorithm is based upon the above observations.

Now we describe the algorithm for obtaining a set P(H) of potential topologies
of HK for a node H of D(G, K̄). For simplicity of notations, let N1, N2, and
N3 denote the set of minimal vertex separators of type 1, type 2, and type 3
contained in HK , respectively, and let N a

2 denote the set of the minimal vertex
separators in N2 containing vertex a. For a node H with |HS | = 1, define λ(H)
to be the maximum distance dΠ(HS , HC) among all 3-Steiner roots Π of HG in
T (H) and define Υ (H) to be a 3-Steiner root Π of HG in T (H) with dΠ(v, HC) =
λ(H). In the following, assume that G has a 3-Steiner root and α and β are
generic Steiner vertices. The containment relation between maximal cliques and
minimal vertex separators are important in solving the problem. We classify HK

into 7 types according to the minimal vertex separators contained in HK .
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1. HK is a type (a) clique, i.e., HK contains two minimal separators A and
B of type 3 and A ∩ B = {a, b}. Then, let P(H) = {(a, A \ {a, b}, b, B \
{a, b}), (b, A \ {a, b}, a, B \ {a, b})}.

2. HK is a type (b) clique, i.e., HK contains two minimal separators A and B
of type 3 and A∩B = {a}. Then, let P(H) = {(a, A\{a}, β, B \{a}), (β, A\
{a}, a, B \ {a})}. For example, (H8)K of the decomposition tree in Figure 2
is a type (b) clique.

3. HK is a type (c) clique, i.e., HK contains two minimal separators A and B
of type 3 and A ∩ B = ∅. Then, either P(H) = {(α, A, β, B)}.

4. HK is a type (d) clique, i.e., HK contains exactly one minimal vertex sepa-
rator A of type 3. For example, (H7)K of the decomposition tree in Figure 2
is a type (d) clique. In this case T (HK) is a conjoined stars for any 3-Steiner
root of G. Let B =

⋃

S∈Δ(HK),S �⊆A S. We can verify that |A∩B| ≤ 1. We first
determine a set CA of vertices in A that are possible to be the central vertex
of T (A) for some 3-Steiner root T of G. Suppose A ⊂ K ′ for some maximal
clique K ′ �= HK such that K ′ contains two minimal vertex separators A and
B′ of type 3. If there exists K ′ with A ∩ B′ = ∅, then CA = {β}; else if
there exists K ′ with A∩B′ = {a′}, then CA = {a′, β}; else if there exists K ′

with A ∩ B′ = {a′, b′}, then CA = {a′, b′}; else if there is a minimal vertex
separator S = {a′, b′} ⊂ A, then CA = {a′, b′}; else all maximal cliques K ′

containing A contains exactly one minimal vertex separator of type 3, i.e.,
A, and all minimal vertex separators properly contained in A are of type 1,
we let CA = {β}. In all the above cases, we have |CA| ≤ 2. Consider the
following three cases:

(a) A∩B = {a}. In this case, there is a minimal vertex separator S′ of type
2 such that S′ ⊂ B and a ∈ S′. Suppose B contains exactly one minimal
vertex separator of type 2, namely S′ = {a, b}, and HK = A ∪ S′.
Then for a 3-Steiner root T of G with T (S′) being a star, T (HK) =
(a, A\{a}, β, {b}). For a 3-Steiner root T of G with T (S′) being an edge,
a is not a central vertex of T (A) but is the central vertex of T (HK)
other than the central vertex of T (A) and we have T (HK) = (x, A \
{x, a}, a, HK\A) where x ∈ CA\{a}. Thus P(H) = {(a, A\{a}, β, {b})}∪
{(x, A \ {x, a}, a, HK \ A) | x ∈ CA \ {a}}.

On the other hand, suppose B contains more than one minimal vertex
separator of type 2 or |HK | > |A| + 1. For any 3-Steiner root T of G,
T (S′) is an edge for any S′ contained in B. We see that a is not the
central vertex of T (A) for any 3-Steiner root T of G and a must be the
central vertex of T (HK) other than the central vertex of T (A) for any
3-Steiner root T of G. Let P(H) = {(x, A \ {x, a}, a, HK \ A) | x ∈ CA}.

(b) A∩B = ∅ and B contains a minimal vertex separator S′ of type 2. Then
HK \ A = S′ and A does not contain any minimal vertex separator of
type 2. Let P(H) = {(α, A, β, HK \ A)}.

(c) A ∩ B = ∅ and all minimal vertex separators contained in B are of type
1. Let P(H) = {(x, A \ {x}, β, HK \ A) | x ∈ CA}.
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5. HK is a type (e) clique, i.e., N3 = ∅ and N2 is a disjoint union of nonempty
sets N a

2 and N b
2 where {a, b} ⊂ HK and a �= b. Let A = (

⋃

S∈Na
2

S) \ {a}.
There are three subcases:

(a) |N a
2 | ≥ 2 and |N b

2 | ≥ 2. Then P(H) = {(a, A, b, HK \ (A ∪ {a, b}))}.

(b) |N a
2 | ≥ 2 and N b

2 = {S = {b, c}}. Then P(H) = {(a, A, b, HK \ (A ∪
{a, b})), (a, A, c, HK \ (A ∪ {a, c}))}

(c) |N a
2 | = 1 and |N b

2 | = 1. Let N a
2 = {{a, b}} and N b

2 = {{c, d}}. If
HK = {a, b, c, d}, then P(H) = {(α, {a, b}, β, {c, d}), (a, {b}, c, HK \
{a, b, c}), (a, {b}, d, HK\{a, b, d}), (b, {a}, c, HK\{a, b, c}), (b, {a}, d, HK\
{a, b, d})}; else P(H)={(a, {b}, c, HK\{a, b, c}), (a, {b}, d, HK\{a, b, d}),
(b, {a}, c, HK \ {a, b, c}), (b, {a}, d, HK \ {a, b, d})}.

6. HK is a type (f) clique, i.e., N3 = ∅ and there is a vertex a ∈ HK such that
N2 = N a

2 . Let Sa =
⋃

S∈Na
2

S. There are two cases:

(a) |N a
2 | ≥ 2. We have several cases:

i. There exists a child node Ĥ of H with |ĤS | = 2 satisfying one of
the following two conditions hold: (i) Π(ĤS) is a star for all trees
Π ∈ T (Ĥ); and (ii) there does not exists a tree Π ∈ T (Ĥ) with
that Π(ĤS) is an edge, a is a leaf of Π , and dΠ(ĤS , ĤC) > 1.
Then assume ĤS = {a, x} and let P(H) = {(a, HK \ {a, x}, β, {x}),
(a, {x}, β, HK \ {a, x})}.

ii. The above case does not hold and there exists a child node Ĥ of H
with |ĤS | = 1 such that λ(Ĥ) < 3. Assume ĤS = {x}. If x ∈ Sa and
a �= x, let P(H) = {(a, HK \ {a, x}, β, {x})}. Otherwise x /∈ Sa, let
P(H) = {(a, Sa \ {a}, β, HK \ Sa)}.

iii. |HS | = 2 and the above two cases do not hold. Assume HS = {a, b}.
In a 3-Steiner root T of G either T (HS) is an edge or T (HS) is a
star. Let P(H) = {(a, Sa \ {a}, β, HK \ Sa), (a, HK \ {a, b}, β, {b})}.

iv. |HS | = 1 and the above three cases do not hold. Assume HS = {x}.
If x ∈ Sa and a �= x, let P(H) = {(a, HK \ {a, x}, β, {x}), (a, Sa \
{a}, β, HK\Sa)}. Otherwise x /∈ Sa, let P(H) = {(a, Sa\{a}, β, HK\
Sa)}.

(b) |N a
2 | = 1 and N a

2 = {S = {a, b}}. Let P(H) = {(α, S, β, HK \ S),
(a, {b}, β, HK \ S), (b, {a}, β, HK \ S)}.

7. HK is a type (g) clique, i.e., N3 = ∅ and N2 = ∅. We claim that if G has
a 3-Steiner root, then there is a 3-Steiner root T of G such that T (K) =
(α, Va, β, Vb) where Va ∩ Vb = ∅ and Va ∪ Vb = HK . Assume HS = {u}.
If λ(Ĥ) > 1 for all child nodes, then let P(H) = {(α, {u}, β, HK \ {u})}.
Otherwise there exists exactly one child node Ĥ of H with λ(Ĥ) = 1. Assume
ĤS = {v}. Let P(H) = {(α, HK \ {v}, β, {v})}.
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Algorithm 1. Computing a 3-Steiner root Υ of HG with Υ (HK) = Γ

Input: A topology Γ of HK .
Output: A 3-Steiner root Υ of HG with Υ (HK) = Γ such that G has a 3-Steiner root
T with T (HV ) = Υ .

For a node H with |HS| = 1, define λ(H) to be the maximum distance dΠ(v, HC),
where v is the only vertex in HS, among all 3-Steiner roots Π of HG in T (H) and
define Υ (H) to be a 3-Steiner root Π of HG in T (H) with dΠ(v, HC) = λ(H).
Initially let Υ = Γ ;
for each child node Ĥ of H with ĤS being of type 3 or of type 1 do

If ĤS is of type 1, let Π be Υ (Ĥ); otherwise let Π be a tree in T (Ĥ) with
Π(ĤS) = Γ (ĤS).
let Υ = Υ

�
ĤS

Π ;
end for
Let ΔH = Δ(HK) \ Δ(HS) where Δ(HS) is the set of minimal vertex separators
contained in HS including HS.
for each separator S of type 2 in ΔH do

let S = {a, b} and let H be the set of child nodes Ĥ with ĤS = S.
if Γ (S) is a star then

for each node Ĥ ∈ H do
Let Π be a tree in T (Ĥ) with Π(S) being a star and both central vertices of
Π(ĤK) being Steiner vertices if such a tree exists and let Π be any tree in
T (Ĥ) with Π(S) being a star otherwise.
let Υ = Υ

�
ĤS

Π
end for

else
Γ (HS) is an edge. Without loss of generality assume that b is a central vertex
and a is a leaf of Γ .
if dΓ (S, HK \ S) > 1 then

for each node Ĥ ∈ H do
let Π be a tree Π ∈ T (Ĥ) with that Π(S) is an edge, a is a leaf of Π , and
dΠ(S, ĤC) > 1 if such a tree exists; and let Π be a tree in T (Ĥ) with that
b is a leaf of Π and Π(S) is an edge otherwise.
let Υ = Υ

�
ĤS

Π .
end for

else
dΓ (S, HK \ S) = 1
for each node Ĥ ∈ H do

Let Π be a tree in T (Ĥ) with that b is a leaf.
let Υ = Υ

�
ĤS

Π .
end for

end if
end if

end for
if Υ is a 3-Steiner root of HG then

output Υ ;
else

output a null tree.
end if
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4 Complexity

We use n and m for the numbers of vertices and edges of a graph, respectively.
A chordal graph can be recognized in O(n + m) time. A clique tree of a chordal
graph can be constructed in O(n + m) time. A decomposition tree D(G, K̄) of
a chordal graph G can be constructed from a clique tree of G in O(n + m)
time. There are O(n) maximal cliques and O(n) minimal vertex separators in
a chordal graph. Every node of a decomposition tree corresponds to a maximal
cliques. Hence the number of nodes of a decomposition tree is O(n). Every edge
of a decomposition tree corresponds to a minimal vertex separator. It is easy to
verify that only constant number of topologies of HK in P(H) for every node H
of D(G, K̄). For each topology Γ ∈ P(H), we run Algorithm 1 once to construct
the a 3-Steiner root Υ of HG if it exists. The running time of Algorithm 1 is
O(|HK | +

∑

1≤i≤h |(Ĥi)S |) where Ĥ1, Ĥ2, . . . , Ĥh are all child nodes of H . Since
we run Algorithm 1 |P(H)| times for each node H of D(G, K̄), the total running
time of Algorithm 1 is

∑

H∈V (D(G,K̄)) O(|P(H)| · (|HK | +
∑

i |(Ĥi)S |))
=

∑

H∈V (D(G,K̄)) O(|P(H)| · 2 · |HK |) = O(n + m). The total running time for
computing P(H) for each node H of D(G, K̄) is O(n + m). It can be analyzed
in the same way as we did for the total running time of Algorithm 1. Thus we
have the following theorem:

Theorem 1. A graph having a 3-Steiner root can be recognized in O(n + m)
time.
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Abstract. Modularity is a recently introduced quality measure for
graph clusterings. It has immediately received considerable attention in
several disciplines, and in particular in the complex systems literature,
although its properties are not well understood. We study the problem
of finding clusterings with maximum modularity, thus providing theo-
retical foundations for past and present work based on this measure.
More precisely, we prove the conjectured hardness of maximizing modu-
larity both in the general case and with the restriction to cuts, and give
an Integer Linear Programming formulation. This is complemented by
first insights into the behavior and performance of the commonly applied
greedy agglomaration approach.

1 Introduction

Graph clustering is a fundamental graph-theoretic problem in data and, more
specifically, network analysis [1]. Studied for decades and applied in many set-
tings, it is currently popular as the problem of partitioning networks into commu-
nities. In this line of research, a novel graph clustering index called modularity
has been proposed recently [2]. The rapidly growing interest in this measure
prompted a series of follow-up studies on various applications and possible ad-
justments (see, e.g., [3,4,5,6]). Moreover, an array of heuristic algorithms has
been proposed to optimize modularity. These are based on a greedy agglomer-
ation [7], on spectral division [8,9], simulated annealing [10], or extremal opti-
mization [11] to name but a few prominent examples. While these studies often
provide subjective plausibility arguments in favor of the resulting partitions, we
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know of only one attempt to characterize properties of clusterings with maxi-
mum modularity [3]. In particular, none of the proposed algorithms has been
shown to produce partitions that are optimal with respect to modularity.

In this paper we study the problem of finding clusterings with maximum
modularity, thus providing theoretical foundations for past and present work
based on this measure. More precisely, we proof the conjectured hardness of
maximizing modularity both in the general case and the restriction to cuts, and
give an integer linear programming formulation to facilitate optimization without
enumeration of all clusterings. Since the most commonly employed heuristic to
optimize modularity is based on greedy agglomeration, we investigate its worst-
case behavior. In fact, we give a graph family for which the greedy approach
yields an approximation factor no better than two. In addition, our examples
indicate that the quality of greedy clusterings may heavily depend on the tie-
breaking strategy utilized. In fact, in the worst case, no approximation factor
can be provided. These performance studies are concluded by partitioning some
previously considered networks optimally, which does yield further insight.

This paper is organized as follows. Section 2 contains brief preliminaries, for-
mulations of modularity and an ILP formulation of the problem. Basic and
counterintuitive properties of modularity are observed in Sect. 3. Our NP-
completeness proofs are given in Sect. 4, followed by an analysis of the greedy
approach in Sect. 5. Our work is concluded by characterizations of revisited
examples from previous work in Sect. 6 and a brief discussion in Sect. 7.

2 Preliminaries

Throughout this paper, we will use the notation of [1]. More precisely, we assume
that G = (V, E) is an undirected connected graph with n := |V | vertices, m :=
|E| edges. Denote by C = {C1, . . . , Ck} a partition of V . We call C a clustering
of G and the Ci, which are required to be non-empty, clusters; C is called trivial
if either k = 1 or k = n. We denote the set of all possible clusterings of a
graph G with A (G). In the following, we often identify a cluster Ci with the
induced subgraph of G, i. e., the graph G[Ci] := (Ci, E(Ci)), where E(Ci) :=
{{v, w} ∈ E : v, w ∈ Ci}. Then E(C) :=

⋃k
i=1 E(Ci) is the set of intra-cluster

edges and E \ E(C) the set of inter-cluster edges. The number of intra-cluster
edges is denoted by m(C) and the number of inter-cluster edges by m(C). The
set of edges that connect Ci and Cj is denoted by E(Ci, Cj).

2.1 Definition of Modularity

Modularity is a quality index for clusterings. Given a simple graph G = (V, E),
we follow [2] and define the modularity q (C) of a clustering C as

q (C) =
∑

C∈C

[

|E(C)|
m

−
(

∑

v∈C deg(v)
2m

)2
]

. (1)
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This formula reveals an inherent trade-off: to maximize the first term, many
edges should be contained in clusters, whereas the minimization of the second
term is achieved by splitting the graph into many clusters with small total de-
grees. Note that the first term |E(C)|/m is also known as coverage [1].

2.2 Maximizing Modularity Via Integer Linear Programming

The problem of maximizing modularity can be cast into a very simple and in-
tuitive integer linear program (ILP). Given a graph G = (V, E) with n :=
|V | nodes, we define n2 decision variables Xuv ∈ {0, 1}, one for every pair of
nodes u, v ∈ V . The key idea is that these variables can be interpreted as an
equivalence relation (over V ) and thus form a clustering. In order to ensure
consistency, we need the following constraints, which guarantee

reflexivity ∀ u : Xuu = 1 ,

symmetry ∀ u, v : Xuv = Xvu , and

transitivity ∀ u, v, w :

⎧

⎨

⎩

Xuv + Xvw − 2 · Xuw ≤ 1
Xuw + Xuv − 2 · Xvw ≤ 1
Xvw + Xuw − 2 · Xuv ≤ 1

.

The objective function of modularity then becomes

1
2m

∑

(u,v)∈V 2

(

Euv − deg(u) deg(v)
2m

)

Xuv ,

with Euv =

{

1 , if (u, v) ∈ E

0 , otherwise
.

Note that this ILP can be simplified by pruning redundant variables and con-
straints, leaving only

(

n
2

)

variables and
(

n
3

)

constraints.

3 Fundamental Observations

In the following, we identify basic structural properties that clusterings with
maximum modularity fulfill. We first focus on the range of modularity, for which
Lemma 1 gives the lower and upper bound.

Lemma 1. Let G be an undirected and unweighted graph and C ∈ A (G). Then
−1/2 ≤ q (C) ≤ 1 holds.

Lemma 1 is proven by minimizing modularity, for details see [12]. As a result,
any bipartite graph Ka,b with the canonic clustering C = {Ca, Cb} yields the
minimum modularity of −1/2. The upper bound is obvious from our reformula-
tion in Equation (1), and has been observed previously [3,4,13]. It can only be
attained in the specific case of a graph with no edges, where coverage is com-
monly defined to be 1. The following four results strongly characterize the rough
structure of a clustering with maximum modularity.
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Corollary 1. Isolated nodes have no impact on modularity.
Corollary 1 directly follows from the fact that modularity depends on edges and
degrees, thus, an isolated node does not contribute, regardless of its association
to a cluster.

Lemma 2. A clustering with maximum modularity has no cluster that consists
of a single node with degree 1.

Lemma 3. There is always a clustering with maximum modularity, in which
each cluster consists of a connected subgraph.

The proofs of Lemmas 2 and 3 can be found in [12] and are straightforward.
Both rely on the fact that a strict increase in modularity is possible, if they are
violated.
Corollary 2. A clustering of maximum modularity does not include discon-
nected clusters.
Corollary 2 follows from Lemma 3 and Equation (1). In the following, we exclude
isolated nodes from further consideration, i. e., all nodes are assumed to be of
degree greater than zero. Thus, the search for an optimum can be restricted to
clusterings, in which clusters are connected subgraphs and there are no clusters
consisting of nodes with degree 1.

3.1 Counterintuitive Behavior

In the last section, we listed some intuitive and desirable properties like connec-
tivity within clusters for clusterings of maximum modularity. However, due to
the enforced balance between coverage and the sums of squared cluster degrees,
counter-intuitive situations arise. These are non-locality, scaling behavior, and
sensitivity to satellites.

(a) (b)

Fig. 1. Non-local behavior. Clus-
ters are represented by colors.

Non-Locality. At a first view, modularity
seems to be a local quality measure. Recalling
Equation (1), each cluster contributes sepa-
rately. However, the example presented in Fig-
ures 1(a) and 1(b) exhibit a typical non-local
behavior. In these figures, clusters are rep-
resented by colors. By adding an additional
node connected to the leftmost node, the op-
timal clustering is altered completely. Accord-
ing to Lemma 2 the additional node has to be clustered together with the leftmost
node. This leads to a shift of the leftmost white node from the white cluster to
the black cluster, although locally its neighborhood structure has not changed.

Sensitivity to Satellites. A clique with leaves is a graph of 2n nodes that consists
of a clique Kn and n leaf nodes of degree one, such that each node of the clique
is connected to exactly one leaf node. For a clique, the trivial clustering with
k = 1 has maximum modularity. For a clique with leaves, however, the optimal
clustering changes to k = n clusters, in which each cluster consists of a connected
pair of leaf and clique nodes. Figure 2(a) shows such an example.
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(a) (b)

Fig. 2. Scaling behavior.
Clustering by colors.

Scaling Behavior. Figures 2(a) and 2(b) display the
scaling behavior of modularity. By simply doubling
the graph presented in Figure 2(a), the optimal clus-
tering is altered completely. While in Figure 2(a) we
obtain three clusters each consisting of the minor K2,
the clustering with maximum modularity of the graph
in Figure 2(b) consists of two clusters, each being a
graph equal to the one in Figure 2(a). This behavior is
in line with the previous observations in [3,5], where it was observed that size and
structure of clusters in the optimum clustering depend on the total number of
links in the network. Hence, clusters that are identified in smaller graphs might
be combined to a larger cluster in a optimum clustering of a larger graph. The
formulation of Equation 1 mathematically explains this observation as modular-
ity optimization strives to optimize the trade-off between coverage and degree
sums. This provides a rigorous understanding of the observations made in [3,5].

4 NP-Completeness

It has been conjectured that maximizing modularity is hard [7], but no formal
proof was provided to date. We next show that decision version of modularity
maximization is indeed NP-complete.

Problem 1 (Modularity). Given a graph G and a number K, is there a
clustering C of G, for which q (C) ≥ K?

Note that we may ignore the fact that, in principle, K could be a real number
in the range [0, 1], because 4m2 · q (C) is integer for every partition C of G and
polynomially bounded in the size of G. Our hardness result for Modularity is
based on a transformation from the following decision problem.

Problem 2 (3-Partition). Given 3k positive integer numbers a1, . . . , a3k such
that the sum

∑3k
i=1 ai = kb and b/4 < ai < b/2 for an integer b and for all

i = 1, . . . , 3k, is there a partition of these numbers into k sets, such that the
numbers in each set sum up to b?

We show that an instance A = {a1, . . . , a3k} of 3-Partition can be transformed
into an instance (G(A), K(A)) of Modularity, such that G(A) has a clustering
with modularity at least K(A), if and only if a1, . . . , a3k can be partitioned into
k sets of sum b = 1/k ·

∑k
i=1 ai each. It is crucial that 3-Partition is strongly

NP-complete [14], i.e. the problem remains NP-complete even if the input is
represented in unary coding. This implies that no algorithm can decide the
problem in time polynomial even in the sum of the input values, unless P = NP .
More importantly, our transformation need only be pseudo-polynomial.

The reduction is defined as follows. Given an instance A of 3-Partition, con-
struct a graph G(A) with k cliques (completely connected subgraphs) H1, . . . , Hk

of size a =
∑3k

i=1 ai each. For each element ai ∈ A we introduce a single element
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node, and connect it to ai nodes in each of the k cliques in such a way that each
clique member is connected to exactly one element node. It is easy to see that
each clique node then has degree a and the element node corresponding to ele-
ment ai ∈ A has degree kai. The number of edges in G(A) is m = k/2 · a(a+ 1).
Note that the size of G(A) is polynomial in the unary coding size of A, so that
our transformation is indeed pseudo-polynomial. Before specifying bound K(A)
for the instance of Modularity, we will show three properties of maximum
modularity clusterings of G(A). Together these properties establish the desired
characterization of solutions for 3-Partition by solutions for Modularity.

Lemma 4. In a maximum modularity clustering of G(A), none of the cliques
H1, . . . , Hk is split.

Lemma 5. In a maximum modularity clustering of G(A), every cluster contains
at most one of the cliques H1, . . . , Hk.

The proofs of Lemmas 4 and 5 can be found in [12]. Both are based on the fact
that modularity can be increased by a modification of the clustering, if either
Lemma is violated. Next, we observe that the optimum clustering places at most
one clique completely into a single cluster.

The previous two lemmas show that any clustering can be strictly improved
to a clustering that contains k clique clusters, such that each one completely
contains one of the cliques H1, . . . , Hk (possibly plus some additional element
nodes). In particular, this must hold for the optimum clustering as well. Now
that we know how the cliques are clustered we turn to the element nodes. As they
are not directly connected, it is never optimal to create a cluster consisting only
of element nodes. Splitting such a cluster into singleton clusters, one for each
element node, reduces the squared degree sums but keeps the edge coverage
at the same value. Hence, such a split yields a clustering with strictly higher
modularity. The next lemma shows that we can further strictly improve the
modularity of a clustering with a singleton cluster of an element node by joining
it with one of the clique clusters.

Lemma 6. In a maximum modularity clustering of G(A), there is no cluster
composed of element nodes only.

Closely following the proofs of the previous two lemmas, we obtain the proof
of Lemma 6 in [12]. We have shown that for the graphs G(A) the clustering
of maximum modularity consists of exactly k clique clusters, and each element
node belongs to exactly one of the clique clusters. Combining the above results,
we now state our main result:

Theorem 3. Modularity is strongly NP-complete.

Proof. For a given clustering C of G(A) we can check in polynomial time whether
q (C) ≥ K(A), so clearly Modularity ∈ NP . For NP-completeness we trans-
form an instance A={a1, . . . , a3k} of 3-Partition into an instance (G(A), K(A))
of Modularity. We have already outlined the construction of the graph G(A)
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above. For the correct parameter K(A) we consider a clustering in G(A) with
the properties derived in the previous lemmas, i. e., a clustering with exactly k
clique clusters. Any such clustering yields exactly (k − 1)a inter-cluster edges,
so the edge coverage is given by

∑

C∈C

|E(C)|
m

=
m − (k − 1)a

m
= 1 − 2(k − 1)a

ka(a + 1)
= 1 − 2k − 2

k(a + 1)
.

Hence, the clustering C = (C1, . . . , Ck) with maximum modularity must mini-
mize deg(C1)2 + deg(C2)2 + . . . + deg(Ck)2. This requires a distribution of the
element nodes between the clusters which is as even as possible with respect to
the sum of degrees per cluster. In the optimum case we can assign each cluster
element nodes corresponding to elements that sum to b = 1/k ·a. In this case the
sum of degrees of element nodes in each clique cluster is equal to k · 1/k · a = a.
This yields deg(Ci) = a2 + a for each clique cluster Ci, i = 1, . . . , k, and gives

deg(C1)2 + . . . + deg(Ck)2 ≥ k(a2 + a)2 = ka2(a + 1)2.

Equality holds only in the case, in which an assignment of b to each cluster is
possible. Hence, if there is a clustering C with q (C) of at least

K(A) = 1 − 2k − 2
k(a + 1)

− ka2(a + 1)2

k2a2(a + 1)2
=

(k − 1)(a − 1)
k(a + 1)

then we know that this clustering must split the element nodes perfectly to the
k clique clusters. As each element node is contained in exactly one cluster, this
yields a solution for the instance of 3-Partition. With this choice of K(A) the
instance (G(A), K(A)) of Modularity is satisfiable only if the instance A of
3-Partition is satisfiable.

Otherwise, suppose the instance for 3-Partition is satisfiable. Then there is
a partition into k sets such that the sum over each set is 1/k ·a. If we cluster the
corresponding graph by joining the element nodes of each set with a different
clique, we get a clustering of modularity K(A). This shows that the instance
(G(A), K(A)) of Modularity is satisfiable if the instance A of 3-Partition is
satisfiable. This completes the reduction and proves the theorem. ��
This result naturally holds also for the straightforward generalization of maxi-
mizing modularity in weighted graphs [15]. Instead of using the numbers of edges
the definition of modularity employs the sum of edge weights for edges within
clusters, between clusters and in the total graph.

4.1 Special Case: Modularity with a Bounded Number of Clusters

A common clustering approach is based on iteratively identifying cuts, see for
example [16,17,18]. The general problem being NP-complete, we now complete
our hardness results by proving that the restricted optimization problem is hard
as well. More precisely, we consider the two problems of computing the clustering
with maximum modularity that splits the graph into exactly or at most two
clusters. Although these are two different problems, our hardness result holds
for both versions, hence, we define the problem cumulatively.
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Problem 4 (2-Modularity). Given a graph G and a number K, is there a
clustering C of G into exactly/at most 2 clusters, for which q (C) ≥ K?

Our proof uses a reduction similar to the one for showing the hardness of the
“MinDisAgree[2]” problem of correlation clustering [19]. The reduction is from
Minimum Bisection for Cubic Graphs (MB3).

Problem 5 (Minimum Bisection for Cubic Graphs). Given a 3-regular
graph G with n nodes and an integer c, is there a clustering into two clusters of
n/2 nodes each such that it cuts at most c edges?

This problem has been shown to be strongly NP-complete in [20]. We construct
an instance of 2-Modularity from an instance of MB3 as follows. For each
node v from the graph G = (V, E) we attach n − 1 new nodes and construct
an n-clique. We denote these cliques as cliq(v) and refer to them as node clique
for v ∈ V . Hence, in total we construct n different new cliques, and after this
transformation each node from the original graph has degree n + 2. Note that
a cubic graph with n nodes has exactly 1.5n edges. In our adjusted graph there
are exactly m = (n(n − 1) + 3)n/2 edges.

We will show that an optimum clustering C∗ of 2-Modularity in the ad-
justed graph has exactly two clusters. Furthermore, such a clustering corresponds
to a minimum bisection of the underlying MB3 instance. In particular, we give
a bound K such that the MB3 instance has a bisection cut of size at most c if
and only if the corresponding graph has 2-modularity at least K. We begin by
noting that there is always a clustering C with q (C) > 0. Hence, C∗ must have
exactly two clusters, as no more than two clusters are allowed. This serves to
show that our proof works for both versions of 2-modularity, in which at most
or exactly two clusters must be found.

Lemma 7. For every graph constructed from a MB3 instance, there exists a
clustering C = {C1, C2} such that q (C) > 0. In particular, the clustering C∗ has
two clusters.

The proof of Lemma 7 can be found in [12]. Next, we show that in an optimum
clustering, all the nodes of one node clique cliq(v) are located in one cluster.
The proof is also published in [12]

Lemma 8. For every node v ∈ V a cluster C ∈ C∗ exists, such that cliq(v) ⊆ C.

The final lemma before defining the appropriate input parameter K for the 2-
Modularity and thus proving the correspondence between the two problems
shows that the clusters in the optimum clusterings have the same size. The proof
can be found in [12].

Lemma 9. In C∗, each cluster contains exactly n/2 complete node cliques.

Finally, we can state theorem about the complexity of 2-Modularity:
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Theorem 6. 2-Modularity is strongly NP-complete.

Proof. Let (G, c) be an instance of Minimum Bisection for Cubic Graphs,
then we construct a new graph G′ as stated above and define K := 1/2 − c/m.

As we have shown in Lemma 9 that each cluster of C∗ that is an optimum
clustering of G′ with respect to 2-Modularity has exactly n/2 complete node
cliques, the sum of degrees in the clusters is exactly m. Thus, it is easy to see
that if the clustering C∗ meets the following inequality

q (C∗) ≥ 1 − c

m
− 2m2

4m2 =
1
2

− c

m
= K ,

then the number of inter-cluster edges can be at most c. Thus the clustering C∗

induces a balanced cut in G with at most c cut edges. ��

This proof is particularly interesting as it highlights that maximizing modularity
in general is hard due to the hardness of minimizing the squared degree sums
on the one hand, whereas in the case of two clusters this is due to the hardness
of minimizing the edge cut.

5 The Greedy Algorithm

In contrast to the abovementioned iterative cutting strategy, another commonly
used approach to find clusterings with good quality scores is based on greedy
agglomeration.In the case of modularity, this approach is particularly wide-
spread [7]. It starts with the singleton clustering and iteratively merges those
two clusters that yield a clustering with the best modularity, i. e., the largest
increase or the smallest decrease is chosen. After n − 1 merges the clustering
that achieved the highest modularity is returned. Note that n − 1 is an upper
bound on the number of iterations and that one can terminate the algorithm as
soon as no further increase in modularity is possible. This is due to a property
called single-peakedness, proven in [7].

Since it is NP-hard to maximize modularity in general graphs, it is unlikely
that this greedy algorithm is optimal. In fact, we sketch a graph family, where
the above greedy algorithm has an approximation factor of 2, asymptotically
(Theorem 8). While the former result relies on a deterministic procedure of the
algorithm, in the following we even point out instances where a specific way of
breaking ties of equally attractive merges yield a clustering with modularity of
0, while the optimum clustering has a strictly positive score (Theorem 7).

Modularity is defined such that it takes values in the interval [−1/2, 1] for any
graph and any clustering (Lemma 1). In particular the modularity of a trivial
clustering placing all vertices into a single cluster has a value of 0. We exploit
this technical peculiarity to show that the greedy algorithm has an unbounded
approximation ratio.

Theorem 7. There is no finite approximation factor for the greedy algorithm
for finding clusterings with maximum modularity.
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The full proof can be found in [12]. The key observation is a worst-case scenario
in the sense that greedy is in each iteration supposed to pick exactly the ”worst”
merge choice of several equivalently attractive alternatives. As mentioned ear-
lier, this negative result is due to the formulation of modularity, which yields
values from the interval [−1/2, 1]. For instance, a linear remapping of the range
of modularity to the interval [0, 1], the greedy algorithm yields a value of 1/3
compared to the new optimum score of 2/3. In this case the approximation fac-
tor would be 2. Next, we provide a weaker lower bound for a different class of
graphs, but making no assumptions on random choices of the algorithm.

Theorem 8. The approximation factor of the greedy algorithm for finding clus-
terings with maximum modularity is no better than 2.

Fig. 3. Clique with
attached paths

The founding idea of the proof of Theorem 8 is a special
graph family which is constructed by attaching a path to
each node of a clique. An example is given in Figure 3.
We show that greedy algorithm always yields n clusters,
each of which includes a vertex v and the attached path.
The clustering with maximal modularity, however, seper-
ates the clique from the paths. The approximation factor
asymptotically approaches 2 for n going to infinity with
paths of length 1/2

√
n attached to a clique of size n. See [12] for details.

6 Examples Revisited

Applying our results about maximizing modularity gained so far, we revisit two
example networks that were used in related work [21,2,8]. More precisely, we
compare published greedy solutions with respective optima, thus revealing two
peculiarities of modularity. First, we illustrate a behavioral pattern of the greedy
merge strategy and, second, we relativize the quality of the greedy approach.

The first instance, Figure 4, is the karate club network of Zachary originally
introduced in [21] and used for demonstration in [2]. The real-world partition of
the club is given by the shape of the nodes, while the colors indicate the clustering
calculated by the greedy algorithm and blocks refer to a optimum clustering
maximizing modularity, that has been obtained by solving the above ILP. The
corresponding scores of modularity are 0.431 for the optimum clustering, 0.397
for the greedy clustering, and 0.383 for the clustering given by the split. Observe
the following peculiarity: Due to the attempt to balance the squared sum of
degrees (over the clusters), a node with large degree (white square) and one with
small degree (white circle) are merged relatively soon. Using the same argument,
such a cluster will unlikely be merged with another one. As a result, a cluster
rarely has only one node, but relative small clusters still occur, featuring skew
distribution of node degrees.

The second instance, Figure 5, is a network of books on politics, compiled by
V. Krebs and used for demonstration in [8]. Nodes represent books on American
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Fig. 4. The network of a Karate club in-
troduced by Zachary [21]

Fig. 5. The networks of books on politics
compiled by V. Krebs

politics and edges join pairs of books that are frequently purchased together
bought from Amazon.com. The optimum clustering maximizing modularity is
given by the shapes of nodes, the colors of nodes indicate a clustering calculated
by the greedy algorithm and the blocks show a clustering calculated by Geomet-
ric MST Clustering (GMC) which is introduced in [22] using the geometric mean
of coverage and performance, both of which are quality indices discussed in the
same paper. The corresponding scores of modularity are 0.527 for the optimum
clustering, 0.502 for the greedy clustering, and 0.510 for the GMC clustering.
A key observation is that GMC outperforms the greedy algorithm although it
does not consider modularity in its calculations. Moreover, the comparison of
the structure of the calculated clusterings reveals that several clusterings close
to the optimum one still have relative large modularity score. Thus, the good
performance of the greedy approach comes as no surprise.

7 Conclusion

We provide the first formal assessments of a popular clustering index known as
modularity. We have settled the open question about the complexity status of
modularity maximization by proving its NP-completeness in the strong sense.
We show that this even holds for the restricted version with a bound of two on
the number of clusters. This justifies the further investigation of approximation
algorithms and heuristics, such as the widespread greedy approach. For the lat-
ter we prove a first lower bound on the approximation factor. Our analysis of the
greedy algorithm also includes a brief comparison with the optimum clustering
which is calculated via ILP on some real-world instances, thus encouraging a
reconsideration of previous results. For the future we plan an extended analy-
sis and the development of a clustering algorithm with provable performance
guarantees. The special properties of the measure, its popularity in application
domains and the absence of fundamental theoretical insights hitherto, render
further mathematically rigorous treatment of modularity necessary.
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Abstract. It has been shown in [9] that there exist planar digraphs that
require exponential area in every upward straight-line planar drawing. On
the other hand, upward poly-line planar drawings of planar graphs can
be realized in Θ(n2) area [9]. In this paper we consider families of DAGs
that naturally arise in practice, like DAGs whose underlying graph is a
tree (directed trees), is a bipartite graph (directed bipartite graphs), or is
an outerplanar graph (directed outerplanar graphs). Concerning directed
trees, we show that optimal Θ(n log n) area upward straight-line/poly-
line planar drawings can be constructed. However, we prove that if the
order of the neighbors of each node is assigned, then exponential area is
required for straight-line upward drawings and quadratic area is required
for poly-line upward drawings, results surprisingly and sharply contrast-
ing with the area bounds for planar upward drawings of undirected trees.
After having established tight bounds on the area requirements of planar
upward drawings of several families of directed trees, we show how the
results obtained for trees can be exploited to determine asymptotic opti-
mal values for the area occupation of planar upward drawings of directed
bipartite graphs and directed outerplanar graphs.

1 Introduction

Upward drawings of directed acyclic digraphs (DAGs for short) have several
applications in the visualization of hierarchical structures, as PERT diagrams,
subroutine-call charts, Hasse diagrams, and is-a relationships, and hence they
have been intensively studied from a theoretical point of view. It is known that
testing the upward planarity of a graph is an NP -complete problem if the graph
has a variable embedding [13], while it is polynomially solvable if the embedding
of the graph is fixed [2], if the underlying graph is supposed to be an outerplanar
graph ([15]), if the digraph has a single source ([14]), or if it’s a bipartite DAG
([7]). Di Battista and Tamassia ([8]) showed that a graph is upward planar if and
only if it’s a subgraph of an st-planar graph. Moreover, some families of DAGs
are always upward planar, like the series-parallel digraphs and the digraphs
whose underlying graph is a tree.

Concerning algorithms for obtaining upward drawings of DAGs in small area,
Di Battista et al. have shown in [9] that every upward planar embedding can

A. Brandstädt, D. Kratsch, and H. Müller (Eds.): WG 2007, LNCS 4769, pp. 133–144, 2007.
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be drawn with upward poly-line edges in optimal Θ(n2) area, while there exist
graphs that require exponential area in any planar straight-line upward drawing.
Hence, it is natural to restrict the attention to interesting families of DAGs,
searching for better area bounds. This research direction has been taken by
Bertolazzi et al. in [1], where it is shown that series-parallel digraphs admit
upward planar straight-line drawings in Θ(n2) area, while exponential area is
generally required if the embedding is chosen in advance.

In this paper we study classes of DAGs that commonly arise in practice, as
DAGs whose underlying graph is a tree (directed trees), is a bipartite graph (di-
rected bipartite graphs), or is an outerplanar graph (directed outerplanar graphs).
All of such digraph classes exhibit simple and strong structural properties that
allow to create planar upward drawings with less constraints and in a easier way
with respect to general digraphs. Consequently, we are able to construct straight-
line planar upward drawings of directed trees in Θ(n log n) area, and to get Θ(n)
area straight-line planar upward drawings for some sub-classes of directed trees.
Surprisingly, we prove that when constraints are imposed on the drawings by
forcing an ordering of the neighbors of each vertex, then again exponential area
is required for constructing straight-line planar upward drawings and quadratic
area is required for constructing poly-line planar upward drawings. Such negative
results contrast with the fact that sub-quadratic area is sufficient for construct-
ing straight-line order-preserving upward planar drawings of undirected trees
([3]). Furthermore, we prove that the lower bounds obtained for directed trees
extend also to directed bipartite graphs and directed outerplanar graphs.

More in detail, we provide the following results: (i) straight-line and poly-line
planar upward drawings of directed trees can be constructed in optimal Θ(n log n)
area (Sec. 3); (ii) straight-line order-preserving planar upward drawings of di-
rected trees require (and can be constructed in) exponential area (Sec. 4); (iii)
poly-line order-preserving planar upward drawings of directed trees require (and
can be constructed in) quadratic area (Sec. 4); (iv) directed binary trees have the
same area requirements of general directed trees (Sec. 5); (v) directed caterpil-
lars and directed spider trees admit linear area straight-line drawings (Sec. 5); (vi)
straight-line planar upward drawings of directed bipartite graphs require (and can
be constructed in) exponential area (Sec. 5); (vii) poly-line planar upward draw-
ings of directed bipartite graphs require (and can be constructed in) quadratic
area (Sec. 5); (viii) straight-line outerplanar upward drawings of directed outer-
planar graphs require (and can be constructed in) exponential area (Sec. 5); and

Table 1. A table summarizing the results on minimum area upward drawings of di-
rected trees. Straight-line and poly-line non-order-preserving drawings are in the same
columns, since they have the same area bounds. Constants b and c are greater than 1.

Straight-line / Poly-line Straight-line Order-Pres. Poly-line Order-Pres.
UB ref. LB ref. UB ref. LB ref UB ref. LB ref.

Dir. Trees O(n log n) Th. 1 Ω(n log n) Th. 1 O(cn) [12] Ω(bn) Th. 2 O(n2) [9] Ω(n2) Th. 3

Dir. Binary Trees O(n log n) Th. 1 Ω(n log n) Th. 1 O(cn) [12] Ω(bn) Th. 2 O(n2) [9] Ω(n2) Th. 3

Dir. Caterpillars O(n) Th. 4 Ω(n) trivial O(cn) [12] Ω(bn) Th. 2 O(n2) [9] Ω(n2) Th. 3
Dir. Spider Trees O(n) Th. 5 Ω(n) trivial O(n) Th. 5 Ω(n) trivial O(n) Th. 5 Ω(n) trivial
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(ix) poly-line planar upward drawings of directed outerplanar graphs require (and
can be constructed in) quadratic area (Sec. 5). Table 1 summarizes the area re-
quirements of planar upward drawings of directed trees, directed binary trees, di-
rected caterpillars, and directed spider trees.

2 Preliminaries

We assume familiarity with graphs and their drawings (see also [5]).
A grid drawing of a graph is a mapping of each vertex to a distinct point of the

plane with integer coordinates and of each edge to a Jordan curve between the
endpoints of the edge. A poly-line drawing is such that the edges are sequences
of rectilinear segments, with bends having integer coordinates. A straight-line
drawing is such that all edges are rectilinear segments. A planar drawing is such
that no two edges intersect. An upward drawing of a digraph is a planar drawing
with each directed edge represented by a curve monotonically increasing in the
vertical direction. In the following when we refer to upward drawings we always
mean planar upward grid drawings. The graph obtained from a digraph G by
considering its edges without orientation is called the underlying graph of G. An
embedding of a graph is a circular ordering of the edges incident on each vertex.
A drawing is order-preserving if the order of the edges incident on each vertex
is the same as the one of an embedding specified in advance. The bounding box
B(Γ ) of a drawing Γ is the smallest rectangle with sides parallel to the axes
that covers Γ completely. We denote by l(Γ ), by r(Γ ), by t(Γ ), and by b(Γ )
the left side, the right side, the top side, the bottom side of B(Γ ), respectively.
The height (width) of Γ is the height (width) of its bounding box plus one. The
area of Γ is the height of Γ multiplied by its width. We denote by y(v) the
y-coordinate of a vertex v that is drawn on the plane.

An outerplanar graph is a graph that has a planar embedding in which all
vertices are incident to the same face. Such an embedding is called outerplanar
embedding. A bipartite graph is a graph G that has the vertices partitioned into
two subsets such that G has edges only between vertices of different subsets. A
caterpillar C is a tree such that the removal from C of all the leaves and of their
incident edges turns C in a path. A spider tree is a tree having only one vertex
of degree greater than two.

3 Upward Drawings of Trees

In this section we show that directed trees admit straight-line upward drawings
in Θ(n log n) area and that such an area is necessary in the worst case, even if
bends are allowed on the edges. Concerning the lower bound, Crescenzi et al.
in [4] showed a non-directed rooted binary tree T that requires Ω(n log n) area
in any strictly upward grid drawing. Now T can be turned in a directed binary
tree T ′ by directing its edges away from the root. Since an upward drawing of
T ′ is a strictly upward drawing of T , the lower bound on the area requirement
of upward drawings of directed trees follows.
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Now we show that every directed tree has an O(n log n) area straight-line up-
ward drawing. This is done by means of an algorithm that consider a directed
tree T , removes from T a path called spine, recursively draws each disconnected
subtree, and finally puts the drawings of the subtrees together with a drawing of
the spine, obtaining a drawing of T . This divide et impera strategy has been in-
tensively used in algorithms for drawing undirected trees and outerplanar graphs
([3,11,10,6]). Let us describe the algorithm more formally.
Preprocessing: The input is a directed tree T with n nodes. We derive a non-
directed rooted tree T ′ from T by removing the orientations from the edges of
T and by choosing a node r in T as root of T ′.
Divide: Let T ∗ be the current non-directed rooted tree and let r∗ be its root
(at the first step the current tree is T ′ rooted at r).

If the number of nodes in T ∗ is greater than one, then select a spine S∗ =
(v0, v1, . . . , vk) in T ∗ with the following properties: (i) v0 = r∗, (ii) for 1 ≤ i ≤ k,
vi is the root of the heaviest (i.e. with the greatest number of nodes) subtree
among the subtrees rooted at the children of vi−1, and (iii) each edge (vi−1, vi)
is directed from vi to vi−1 in T , for 1 ≤ i < k, and (iv) edge (vk−1, vk) is directed
from vk−1 to vk in T , or vk is a leaf. Remove from T ∗ the nodes of S∗, but for
vk, disconnecting T ∗ in several non-directed subtrees. We classify such subtrees
into sets T ∗(↑, vi) and T ∗(↓, vi), with 0 ≤ i < k, so that a tree rooted at a vertex
v goes into set T ∗(↑, vi) (resp. T ∗(↓, vi)) if in the directed tree T there is an edge
directed from v to vi (resp. there is an edge directed from vi to v). Notice that
each set could contain several trees. We denote by T ∗(vk) the tree rooted at vk

and by r(T ∗) the root of a non-directed tree T ∗.
Impera: Assume that in the Divide step a tree T ∗ has been disconnected in a
spine S∗, in a subtree T ∗(vk), and in several subtrees in T ∗(↑, vi) and in T ∗(↓, vi),
with 0 ≤ i < k. Introduce again the direction on the edges of T ∗, obtaining a
directed tree T (vk) from T ∗(vk), obtaining a set of directed trees T (↑, vi) from
the trees in T ∗(↑, vi), and obtaining a set of directed trees T (↓, vi) from the trees
in T ∗(↓, vi). Assume to have for each of such directed trees a drawing with the
following properties: (P1) the drawing is planar, upward, and straight-line; (P2)
the root of the tree is placed on the left side of the bounding box of the drawing;
and (P3) no node of the tree is placed in the drawing below and on the same
vertical line of the root of the tree.

Notice that such a drawing can be trivially constructed for a tree with at most
one node. Now we show how to construct a drawing Γ satisfying properties P1,
P2, and P3 for the directed tree T obtained from T ∗ by introducing again the
directions on the edges. Notice that, in the last Impera step, Γ will be a drawing
of the whole directed tree T . We distinguish two cases:

k = 1: Place the drawings of the trees in T (↓, v0) stacked one above the other
at one unit of vertical distance, with the left side of their bounding boxes on the
same vertical line l, obtaining a drawing Γ ′. Place v0 one unit to the left of l and
one unit below b(Γ ′). Place the drawings of the trees in T (↑, v0) stacked one above
the other at one unit of vertical distance, with the left side of their bounding
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boxes on l, and so that the highest horizontal line intersecting a drawing of
a tree in T (↑, v0) is one unit below v0, obtaining a drawing Γ ′′. If (v0, v1) is
directed from v0 to v1, then place the drawing of T (v1) so that the left side of
its bounding box is on the same vertical line of v0 and so that the bottom side
of its bounding box is one unit above t(Γ ′′) (see Fig. 1.a). Otherwise, that is v1
is a leaf and (v0, v1) is directed from v1 to v0, place v1 on the same vertical line
of v0 and one unit below b(Γ ′′).

k ≥ 2: Place the drawings of the trees in T (↓, v0) stacked one above the other
at one unit of vertical distance, with the left side of their bounding boxes on the
same vertical line l, obtaining a drawing Γ ′. Place v0 two units to the left of l and
one unit below b(Γ ′). Place the drawings of the trees in T (↑, v0) stacked one above
the other at one unit of vertical distance, with the left side of their bounding
boxes on l, and so that the highest horizontal line intersecting a drawing of a tree
in T (↑, v0) is one unit below v0, obtaining a drawing Γ0. For i = 1, 2, . . . , k − 2,
place the drawings of the trees in T (↓, vi) stacked one above the other at one
unit of vertical distance, with the left side of their bounding boxes on l, and
so that the highest horizontal line intersecting a drawing of a tree in T (↓, vi)
is one unit below b(Γi−1), obtaining a drawing Γ ′. Place vi one unit to the left
of l and and one unit below b(Γ ′). Place the drawings of the trees in T (↑, vi)
stacked one above the other at one unit of vertical distance, with the left side
of their bounding boxes on l, and so that the highest horizontal line intersecting
a drawing of a tree in T (↑, vi) is one unit below vi, obtaining a drawing Γi.
Let W be the maximum between the width of the drawing of T (vk) minus 1
and the maximum width of a drawing of a tree in T (↑, vi) or in T (↓, vi) plus 2,
with 0 ≤ i < k. Let l′ be the vertical line W units to the right of v0. Mirror
the drawings of the trees in T (↑, vk−1) with respect to a vertical line and place
them stacked one above the other at one unit of vertical distance, with the right
side of their mirrored bounding boxes one unit to the left of l′ and so that the
highest horizontal line intersecting a drawing of a tree in T (↑, vk−1) is one unit
below b(Γk−2). Mirror the drawings of the trees in T (↓, vk−1) with respect to a
vertical line and place them stacked one above the other at one unit of vertical
distance, with the right side of their mirrored bounding boxes one unit to the
left of l′, and so that the lowest horizontal line intersecting a drawing of a tree
in T (↓, vk−1) is one unit above t(Γk−2). Place vk−1 on l′ one unit below vk−2,
obtaining a drawing Γk−1. Finally, if edge (vk−1, vk) is directed from vk−1 to
vk, mirror the drawing of T (vk) with respect to a vertical line and place it with
the right side of its mirrored bounding box on l′ so that the bottom side of its
bounding box is one unit above t(Γk−1); otherwise, that is vk is a leaf and edge
(vk−1, vk) is directed from vk to vk−1, place vk on l′ one unit below b(Γk−1).

The planarity and the upwardness of the final drawing Γ of T can be easily
verified. Concerning the area requirements of Γ , the height of Γ is O(n), since
there is at least one node of the tree for each horizontal line intersecting Γ .
Denote by w(T (↑, vi)), by w(T (↓, vi)), by w(T (vi)), and by w(n) the width of
the drawing of a tree in T (↑, vi), of a tree in T (↓, vi), of a tree T (vi), and of
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Fig. 1. (a) and (b) Impera step of the algorithm for obtaining straight-line non-order
preserving upward drawings of trees, in the case k = 1 and k ≥ 2. (c) Embedding
En+1 of the series-parallel digraph presented in [1]. (d) A clockwise coil. (e) A counter-
clockwise coil.

an n-nodes tree constructed by the above described algorithm, respectively. In
case k = 1 we have w(T ) = max{w(T (v1)), 1+w(T (↑, v0)), 1+w(T (↓, v0))}, and
in case k ≥ 2 we have w(T ) = max0≤i<k{w(T (vk)), 3 + w(T (↑, vi)), 3 + w(T (↓
, vi))}. By the definition of S, each tree in T (↑, vi) and each tree in T (↓, vi)
has at most n/2 nodes, and T (vk) has at most n − k nodes. It follows that
w(n) = max{w(n−1), 3+w(n/2)}, that easily solves to w(n) = O(log n). So we
have the following:

Theorem 1. Every n-nodes directed tree admits an upward straight-line drawing
in optimal Θ(n log n) area.

4 Upward Drawings of Trees with Fixed Embedding

We discuss the area requirement of order-preserving upward drawings of directed
trees. Garg and Tamassia ([12]) proved that any upward planar embedding can
be realized with straight-line edges in exponential area. Hence, exponential area
straight-line upward drawings of embedded directed trees are feasible.
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Now we prove the claimed exponential lower bound. Bertolazzi et al. showed
in [1] an embedding En of a 2n-vertex series-parallel digraph requiring Ω(4n)
area in any order-preserving upward straight-line drawing. Such an embedding
is recursively defined as follows: E0 consists of a single edge (s0, t0); En+1 is
obtained from En by adding (i) two new nodes sn+1 and tn+1, (ii) an edge from
sn+1 to sn, (iii) an edge from tn to tn+1, (iv) an edge from sn to tn+1 on the
right of En, and (v) an edge from sn+1 to tn+1 on the left of En (see Fig. 1.c).

We define a clockwise coil S to be an upward planar drawing of a directed
path P = (v1, v2, . . . , vk) that respects three properties: property (i) the edges
(vi, vi+1) of P , with i odd (with i even), are directed from vi to vi+1 (resp. from
vi+1 to vi), property (ii) y(vi) < y(vj) (y(vi) > y(vj)), for every i odd (resp.
for every i even) and every j such that j < i, and property (iii) for i odd
(for i even) every vertex vj , with j < i, is contained in the region R(vi, vi+1)
delimited by the edge (vi, vi+1) and by the horizontal half-lines starting at vi and
at vi+1 and directed toward increasing x-coordinates (resp. toward decreasing x-
coordinates) (see Fig. 1.d). A counter-clockwise coil is defined analogously, with
odd replaced by even and vice-versa in property (iii) (see Fig. 1.e). We have:

Lemma 1. A straight-line n-vertex clockwise or counter-clockwise coil S re-
quires Ω(2n) area.

Proof. Consider any straight-line clockwise coil S. We show that adding seg-
ments (vi, vi+2), for i = 1, 2 . . . , n − 2, augments S in a planar drawing S′.
Namely, we prove that a segment (vi, vi+2) does not intersect (a) any segment
(vj , vj+1) of S, with j ≤ i, (b) segment (vi+1, vi+2) of S, (c) segment (vi+2, vi+3)
of S, (d) any segment (vj , vj+1) of S, with j > i + 2, and (e) any segment
(vj , vj+2), with j �= i added to S.

(a) Suppose i is odd (is even). By property (ii) no vertex vj of S, with j < i+2
and j �= i, lies in the open half-plane H below (resp. above) the horizontal line
passing through vi. Moreover, vi+2 is contained in H. Hence, (vi, vi+2) does not
create crossings with any segment (vj , vj+1) of S, with j ≤ i. (b) Since they
are adjacent, (vi, vi+2) and (vi+1, vi+2) cross only if they overlap. But in such a
case (vi, vi+1) and (vi+1, vi+2) overlap, too. However, this is not possible by the
supposed planarity of S. (c) By property (iii) vi is contained inside R(vi+2, vi+3).
Hence (vi, vi+2) is internal to R(vi+2, vi+3) and can not cross (vi+2, vi+3) that
is on the border of R(vi+2, vi+3). (d) By property (iii) vi and vi+2 are con-
tained inside R(vj , vj+1), so (vi, vi+2) is internal to R(vi+2, vi+3) and can not
cross (vi+2, vi+3) that is on the border of R(vi+2, vi+3). (e) It’s easy to see that
segments (vi, vi+2), for i = 1, 2 . . . , n − 2, form a directed path with increasing
y-coordinate and so they don’t cross each other.

Now one can observe that S′ is an upward drawing of En/2 (see [1] and the
beginning of the section). Hence, an n-vertex straight-line clockwise coil S re-
quires the same area of a straight-line drawing of En/2, that is Ω(4n/2) = Ω(2n).
If S is a counter-clockwise straight-line coil a straightforward modification of the
previous proof shows that S requires Ω(2n) area. �
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Fig. 2. (a) An upward drawing of T ∗ with embedding E∗. (b) T (vj). (c) T (vj+1). (d)
An upward drawing of P ∗. Notice that (v1, v2, . . . , v7) is a counter-clockwise coil, while
(v11, v10, . . . , v7) is a clockwise coil.

Now let T ∗ be a tree composed by an n/2-nodes path P ∗ = (v1, v2, . . . , vn/2)
and by n/2 leaves si, 1 ≤ i ≤ n/2, such that si adjacent to vi, with n even
and n/2 odd. Edges (vi, vi+1), with i odd (with i even), are directed from vi to
vi+1 (resp. from vi+1 to vi). Edges (vi, si), with i odd (with i even), are directed
from si to vi (resp. from vi to si). We fix for T ∗ an embedding E∗ such that
for each node vi, 2 ≤ i ≤ n/2, the clockwise order of the edges incident in vi is
[si, vi−1, vi+1] (see Fig. 2.a). We claim the following:

Lemma 2. Every upward drawing Γ ∗ of T ∗ with embedding E∗ contains a clock-
wise or a counter-clockwise coil of at least n/4 nodes.

Proof. Observe that, by the embedding constraints of E∗ and by the upward-
ness of Γ ∗, path P ∗ turns in clockwise direction at every edge (vi−1, vi), for
i = 2, 3, . . . , n/2, i. e. considering the half-lines t1 and t2 starting at vi and
tangent to the curves representing edges (vi−2, vi−1) and (vi1 , vi), respectively,
the angle described by a clockwise movement that leads t1 to overlap with
t2 is less than π. Let j be the highest index such that the drawing S∗

1 of
the subpath (v1, v2, . . . , vj) of P ∗ is a counter-clockwise coil. If j ≥ n/4 or if
such a j doesn’t exist, i.e. P ∗ is entirely drawn as a counter-clockwise coil,
the lemma follows. Otherwise, we claim that the drawing S∗

2 of the subpath
(vn/2, vn/2−1, . . . , vj+1, vj) of P ∗ is a clockwise coil. Property (i) follows from
the upwardness of Γ ∗. Consider three vertices vi−1, vi, and vi+1 that are consec-
utive in P ∗. Let vt be the one between vi−1 and vi+1 such that |y(vi) − y(vt)| is
minimum. Denote by T (vi), with i = j, j+1, . . . , n/2−1 the triangle with curved
edges delimited by (vi, vi−1), by (vi, vi+1), and by the horizontal line through vt.
Assume j is odd. Since (v1, v2, . . . , vj , vj+1) is not a coil, then y(vj−1) ≥ y(vj+1).
Since (vj+1, vj+2) turns in clockwise direction with respect to (vj , vj+1), the
planarity and the upwardness of Γ ∗ imply that vj+2 is inside T (vj), and so
y(vj+2) > y(vj) (see Fig. 2.b). Since (vj+2, vj+3) turns in clockwise direction
with respect to (vj+1, vj+2), the planarity and the upwardness of Γ ∗ imply that
vj+3 is inside T (vj+1), and so y(vj+3) > y(vj+1) (see Fig. 2.c). Proceeding in
the same way, it follows that, for all i = j, j + 1, . . . , n/2 − 2, y(vi+2) > y(vi)
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(y(vi+2) > y(vi)) with i odd (resp. with i even). Hence, property (ii) is satis-
fied by S∗

2 . Further, property (iii) is satisfied by S∗
2 , since every vertex vk, with

k ≥ i + 2 is contained inside T (vi) and, consequently, inside R(vi, vi+1), that
encloses T (vi). If j is even an analogous proof shows that S∗

2 is a clockwise coil.
Finally, since j < n/4, S∗

2 contains at least n/2 − j > n/4 nodes. �

Theorem 2. There exists an n-nodes embedded directed tree requiring Ω(bn)
area, with b greater than 1, in any upward straight-line order-preserving drawing.

Proof. Consider T ∗ and its embedding E∗ described in this section. By Lemma 2
every upward drawing of T ∗ with embedding E∗ contains a coil of at least n/4
nodes that, by Lemma 1, requires Ω(2n/4) = Ω(( 4

√
2)n) = Ω(bn), with b = 4

√
2.
�

Now we turn to poly-line drawings. Di Battista et al. have shown in [9] that every
upward planar embedding can be drawn with poly-line edges in O(n2) area. It
follows that quadratic area poly-line upward drawings of embedded directed trees
are feasible. Concerning the lower bound, we have the following:

Lemma 3. An n-vertex poly-line clockwise or counter-clockwise coil S requires
Ω(n2) area.

Proof. By property (ii) vertex vi, with i odd, has y-coordinate less than the
one of every vertex vj , with j < i. This implies that n/2 vertices vi such that
i is odd occupy n/2 distinct horizontal lines and so the height of S is Ω(n).
Concerning the width of S, suppose w.l.o.g. to draw S starting from a drawing
Γ1 of v1, and then iteratively constructing a drawing Γi by adding vertex vi and
edge (vi−1, vi) to Γi−1, for i = 2, . . . , n. We claim that the width of Γi is at least
the width of Γi−1 plus one. Suppose that the width of Γi is equal to the width
of Γi−1. Then edge (vi−1, vi) can not be on the left or on the right of Γi−1 and
so property (iii) can not be satisfied. It follows that the width of S is Ω(n). �
Hence, we can again consider directed tree T ∗ with fixed embedding E∗. By
Lemma 2 every upward drawing of T ∗ with embedding E∗ contains a clockwise
or a counter-clockwise coil S of at least n/4 nodes. By Lemma 3 Ω(n2) area is
required for S.

Theorem 3. There exists an n-nodes directed tree T ∗ and an embedding of T ∗

requiring Ω(n2) area in any upward poly-line order-preserving drawing.

5 Upward Drawings of Some Families of DAGs

In the first part of this section we study the area requirement of planar upward
drawings of some families of directed trees, like directed binary trees, directed
caterpillars, and directed spider trees, searching for better area bounds with
respect to those obtained for general trees. In the second part of this section we
show that the results obtained for directed trees can be exploited to obtain area
bounds for several others families of DAGs, like directed bipartite graphs and
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directed outerplanar graphs. The proofs of the theorems claimed in this section
are omitted, for reasons of space.

Concerning directed binary trees, one can observe that the lower bounds on
the area requirement of planar upward drawings of directed trees presented in
Sections 3 and 4 are obtained by considering directed binary trees. Hence such
lower bounds are still valid here. Moreover, the algorithms for drawing directed
trees clearly apply also to directed binary trees, hence the optimal bounds on
the area requirement of planar upward drawings of directed binary trees are the
same of the ones of general trees.

Analogously, concerning directed caterpillars, we notice that the lower bound
on the area requirement of order-preserving upward drawings of directed trees
presented in Section 4 was obtained by considering a directed caterpillar. Hence
such a lower bound is still valid here. On the other hand, for non-order-preserving
drawings one can obtain better results with respect to those for general trees, as
shown by the following:

Theorem 4. Every n-nodes directed caterpillar tree admits an upward straight-
line drawing in optimal Θ(n) area.

For directed spider trees linear area is achievable also for order-preserving draw-
ings:

Theorem 5. Every n-nodes directed spider tree admits an upward order-
preserving straight-line drawing in optimal Θ(n) area.

Considering families of DAGs richer than directed trees, exponential area is
sometimes necessary even without forcing an order of the neighbors of each
vertex. In the following we show the inductive construction of an n-vertex di-
rected bipartite graph Bn. Such a digraph contains an O(n) nodes coil in any
upward planar drawing, hence it requires exponential area in any straight-line
upward drawing and quadratic area in any poly-line upward drawing. Such lower
bounds are again matched by the upper bounds in [12,9]. We define Bn as
the directed bipartite graph with vertex sets V and U , inductively defined as
follows: (i) B8 has vertices v−2, v−1, v1, v2 ∈ V and u−2, u−1, u1, u2 ∈ U , the
edges of a directed path (v−2, u−2, v−1, u−1, v1, u1, v2, u2), and the directed edges
(v1, u2), (v−1, u1), (v−2, u1) and (v−1, u2) (see Fig. 3.a); (ii) Bn, with n multi-
ple of 4, is done by Bn−4, by four new vertices vn/4, un/4, v−n/4, and u−n/4
and by eight directed edges (v−n/4, u−n/4), (u−n/4, v−n/4+1), (un/4−1, vn/4),
(vn/4, un/4), (v−n/4+2, un/4), (v−n/4+1, un/4−1), (v−n/4, un/4−1), and
(v−n/4+1, un/4) (see Fig. 3.b). An extensive study of the properties of Bn leads
to the followings:

Theorem 6. There exists an n-vertex directed bipartite graph requiring Ω(bn)
area, with b greater than 1, in any upward straight-line drawing.

Theorem 7. There exists an n-vertex directed bipartite graph requiring Ω(n2)
area in any upward poly-line drawing.
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Fig. 3. (a) B8. (b) Bn. (c) O4. (d) On.

Again using arguments based on the results obtained for directed trees, it can
be shown that directed outerplanar graphs generally require exponential area in
any outerplanar straight-line upward drawing and quadratic area in any poly-line
upward drawing. These results are achieved by considering the n-vertex directed
outerplanar graph On inductively defined as follows: (i) O4 has four vertices v1,
v2, v3, and v4 and four directed edges (v1, v2), (v1, v4), (v2, v3), and (v3, v4) (see
Fig. 3.c); (ii) On+4 is composed by On, by four new vertices vn+1, vn+2, vn+3,
and vn+4, and by six new directed edges (vn+1, vn), (vn+2, vn−1), (vn+1, vn+2),
(vn+2, vn+3), (vn+1, vn+4), and (vn+3, vn+4) (see Fig. 3.d). Studying the proper-
ties of upward drawings of On the followings can be proved:

Theorem 8. There exists an n-vertex directed outerplanar graph requiring
Ω(bn) area, with b greater than 1, in any upward outerplanar straight-line drawing.

Theorem 9. There exists an n-vertex directed outerplanar graph requiring
Ω(n2) area in any upward poly-line drawing.

6 Conclusions and Open Problems

In this paper we have studied the area requirement of upward drawings of several
classes of DAGs that frequently arise in theory and in practice.

We provided tight bounds on the area requirement of straight-/poly-line order-
/non-order-preserving upward drawings of general directed trees and of several
families of directed trees. However, the following problem is still open:

Problem 1. Which is the minimum area of upward straight/poly-line order/non
order-preserving drawings of complete and balanced trees?

Concerning directed bipartite graphs, we have shown an exponential area lower
bound for straight-line upward drawings, but the following is still open:

Problem 2. Which is the minimum area of an upward drawing of a bipartite
DAG? Bipartite DAGs [7] are those DAGs having a vertex set partitioned into
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two subsets V1 and V2 with each edge directed from a vertex of V1 to a vertex
of V2. Consequently, bipartite DAGs form a subclass of the digraphs whose
underlying graph is bipartite, that was considered in this paper.

Further, we have shown an outerplanar graph requiring exponential area in
any straight-line outerplanar upward drawing. However, when considering non-
outerplanar drawings, one could obtain better area bounds, so we ask:

Problem 3. Which is the minimum area of straight-line non-outerplanar upward
drawings of directed outerplanar graphs?
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Abstract. A linear-time algorithm that does not need a planar em-
bedding is presented for the problem of computing two vertex-disjoint
paths, each with prescribed endpoints, in an undirected 3-connected pla-
nar graph.

1 Introduction

The two-paths problem (2PP for short) is, given an undirected graph G and four
distinct vertices s1, s2, t1, t2 in G, to decide whether G contains a pair (p, q) of
two vertex-disjoint paths, p from s1 to t1 and q from s2 to t2, and to compute such
a pair (p, q) if it exists. Known polynomial-time algorithms [9,10] for the 2PP
first reduce a general instance to one in which G is 3-connected and then take
one of two routes, depending on whether G is planar. The 2PP in 3-connected
planar graphs was shown to be solvable in linear time by Perl and Shiloach [6].
Their algorithm and its correctness proof are fairly involved, but a very simple
solution was later given by Woeginger [11]. This note presents a new linear-time
algorithm for the 2PP in 3-connected planar graphs, the symmetric algorithm, of
complexity comparable to Woeginger’s algorithm. In contrast with the previous
algorithms, the symmetric algorithm does not use a planar embedding of the
input graph. If such an embedding is not available, the symmetric algorithm is
likely to offer practical advantages in terms of coding effort, program size and
running time.

This paragraph situates the problem considered here in a broader context.
According to Perl and Shiloach [6,9], Itai reduced the 2PP in general graphs
to the 2PP in 3-connected graphs, and the reduction can be made to preserve
planarity. The reduction is more complicated than the algorithm presented here,
but works in linear time, so that the 2PP can be solved in linear time in planar
graphs. In general graphs with n vertices and m edges, the fastest algorithm
known for the 2PP works in O(mα(m, n) + n) time, where α is an inverse of
the Ackermann function [10]. If we modify the problem by requiring the paths
computed to be edge-disjoint rather than vertex-disjoint (let us speak of the
2EPP), the fastest algorithms known for the planar and general cases have the
running times mentioned above plus an additive term of O(n log n) [10]. If we
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step from undirected to directed graphs, the 2PP and the 2EPP both become
NP-complete [1]. In planar directed graphs, the 2PP can be solved in polynomial
time [8], whereas it is unknown whether this is the case for the 2EPP (even
assuming P �= NP). Let us generalize further by allowing the number k of pairs of
vertices to be connected via disjoint paths to be larger than 2. The resulting kPP
and kEPP are NP-complete, even in undirected planar graphs, if k is arbitrary
and part of the input [3,4]. If k is a constant larger than 2, the kPP and the
kEPP can be solved in polynomial time in undirected graphs [5,7], but the known
algorithms to do so are based on the computation of tree decompositions and
are not practical. In planar directed graphs, an algorithm of Schrijver [8] solves
the kPP in polynomial time for constant k.

2 Woeginger’s Algorithm

For given vertices s and t, an s-t path is a simple path from s to t. Two or more
s-t paths are internally disjoint if no two of the paths share a vertex other than
s and t. The input graph G being 3-connected means that for each pair (s, t) of
distinct vertices in G, G contains 3 internally disjoint s-t paths. This also implies
that in every planar embedding of G, every boundary of a face is a simple cycle.
When p is a path in G, denote by G−p the graph obtained from G by removing
all vertices on p and their incident edges.

Woeginger’s algorithm computes a planar embedding of the input graph G
and then distinguishes between two cases. In Case 1, the boundary of some face
F in the planar embedding contains both s1 and t1. Woeginger shows that if
the given instance has a solution (p, q), then p can be chosen as one of the two
s1-t1 paths p1 and p2 on the boundary of F . It therefore suffices to test whether
G − p1 or G − p2 contains an s2-t2 path q.

In Case 2, no face boundary contains both s1 and t1. In this case, the given
instance always has a solution (p, q). Moreover, Woeginger shows that if p1, p2
and p3 are internally disjoint s1-t1 paths, then p can be chosen as one of these,
so that one can proceed similarly as in Case 1.

3 The Symmetric Algorithm

Let us return to Case 1 of Woeginger’s algorithm. Assume that s1 and t1 both
lie on the boundary of a face F and let p1 and p2 be the s1-t1 paths on the
boundary of F . It is easy to see and proved in detail by Perl and Shiloach [6,
Theorem 4.1] that if each of p1 and p2 contains one of s2 and t2, then the given
instance has no solution. Assume that this is not the case and, without loss of
generality, that p1 contains neither s2 nor t2. Then, if q1, q2 and q3 are internally
disjoint s2-t2 paths in G, p1 is vertex-disjoint from at least one of q1, q2 and q3.
To see this, assume otherwise and, for i = 1, . . . , 3, let vi be a vertex shared
between p1 and qi. The graph G′ obtained from G by adding a new vertex x



A Very Practical Algorithm for the 2PP 147

s1 t1

s2

t2

p1

p2

q1

q2

q3

x
F

v1 v2 v3

Fig. 1. If q1, q2 and q3 all touch p1, they furnish a planar embedding of K3,3

and edges from x to v1, v2 and v3 is clearly planar, since x can be embedded in F
(see Fig. 1). However, the subgraph of G′ spanned by the edges on q1, q2 and q3
or incident on x is a subdivision of the complete bipartite graph on the vertex
sets {s2, t2, x} and {v1, v2, v3}. This contradicts Kuratowski’s theorem (which
can be found, e.g., in [2]).

The new algorithm can be formulated as follows:

Symmetric algorithm:
for j = 1, 2 do

Compute three internally disjoint sj-tj paths p1, p2 and p3;
for i = 1, 2, 3 do

if G − pi contains an s3−j-t3−j path q then
if j = 1 then return (pi, q) else return (q, pi);

return “No solution exists”;

The correctness of the algorithm follows from what was observed above. The
part of the computation with j = 1 corresponds to Case 2 in Woeginger’s algo-
rithm. If the computation continues with j = 2, Case 1 obtains, and a solution is
found if one exists. Since the paths p1, p2 and p3 can be computed in linear time
per path by standard flow-augmentation methods, a linear overall time bound
is immediate, and no planar embedding is used.

4 The Symmetric Algorithm in D

This section gives a complete implementation of the symmetric algorithm in a C-
like subset of the programming language D (http://www.digitalmars.com/d),
chosen here because it allows nested functions.
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int symmetric(int n,int adj[],int vertex[],int next[],

int s1,int s2,int t1,int t2,

out int n1,inout int path1[],out int n2,inout int path2[]) {

// Returns 1 if an instance I=(G,s1,s2,t1,t2) of the two-paths problem

// is solvable, where G is a undirected 3-connected planar graph and

// s1,s2,t1,t2 are arbitrary vertices in G, and 0 otherwise. G is

// represented as follows by (n,adj,vertex,next): The vertex set is

// V={0,...,n-1}. For all v in V, adj[v] is an (integer) pointer to the

// first element of an adjacency list for v. When x points to an element

// of an adjacency list, vertex[x] is the vertex of that element, and

// next[x] points to the next element. The null pointer is represented

// by the integer -1. If I is solvable, the vertices of disjoint paths

// from s1 to t1 and from s2 to t2 are stored in order in path1[0..n1-1]

// and path2[0..n2-1], respectively. Otherwise n1 and n2 are set to 0,

// and path1 and path2 are not changed. The caller must ensure that path1

// and path2 are sufficiently large, e.g., of size n. If G is not

// 3-connected or not planar, the procedure terminates normally, and

// any two paths computed are a correct solution; but the procedure

// may incorrectly indicate that the input instance has no solution.

int onetry(int s1,int s2,int t1,int t2,

out int n1,inout int path1[],out int n2,inout int path2[]) {

int[] avail=new int[n],succ=new int[n];

// C: int *avail=malloc(sizeof(int)*n),*succ=malloc(sizeof(int)*n);

int second[3]; int reached=0,k=0,v;

void dfs1(int u) {

int v,w,x;

avail[u]=0;

if ((v=succ[u])>=0&&avail[v]) { dfs1(v); if (reached) succ[u]=-1; }

x=adj[u];

while (x>=0&&!reached) {

v=vertex[x]; x=next[x];

if (v==s1) { second[k++]=u; reached=1; }

else if (avail[v]) {

if ((w=succ[v])<0) dfs1(v); // v is not on an earlier path

else if (avail[w]) { avail[v]=0; dfs1(w); } // omit dfs1(v)

if (reached) { succ[v]=u; avail[v]=1; }

}

// continue from t1 if fewer than three paths found

if (u==t1&&k<3) reached=0;

}

if (reached) avail[u]=1;

}
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void dfs2(int u) {

int v,x;

if (u==s2) reached=1;

else {

avail[u]=0;

x=adj[u];

while (x>=0&&!reached)

{ if (avail[v=vertex[x]]) dfs2(v); x=next[x]; }

}

if (reached) path2[n2++]=u; // record the s2-t2 path

}

// Begin onetry

for (v=0;v<n;v++) { avail[v]=1; succ[v]=-1; }

if (s1==t1) second[k++]=-1; // record a single trivial s1-t1 path

else dfs1(t1); // compute three internally disjoint s1-t1 paths

// The second vertex of the k’th path is second[k-1], for k=1,2,3.

// The path successor of a vertex v other than s1 is succ[v].

reached=n1=n2=0;

while (k) { // search for s2-t2 path disjoint from k’th s1-t1 path

for (v=0;v<n;v++) avail[v]=1;

avail[s1]=0; // mark the k’th s1-t1 path as visited

v=second[--k];

while (v>=0) { avail[v]=0; v=succ[v]; };

if (avail[t2]) dfs2(t2);

if (reached) { // record the successful s1-t1 path and quit

path1[n1++]=s1;

v=second[k];

while (v>=0) { path1[n1++]=v; v=succ[v]; }

break;

}

}

// C: free(avail); free(succ);

return reached;

}

// Begin symmetric

if (onetry(s1,s2,t1,t2,n1,path1,n2,path2)) return 1;

else return onetry(s2,s1,t2,t1,n2,path2,n1,path1);

}



150 T. Hagerup

References

1. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoret. Comput. Sci. 10, 111–121 (1980)

2. Harary, F.: Graph Theory. Addison-Wesley, Reading, Mass (1969)
3. Kramer, M.R., van Leeuwen, J.: The complexity of wire-routing and finding mini-

mum area layouts for arbitrary VLSI circuits. In: Preparata, F.P. (ed.) Advances
in Computing Research, vol. 2, pp. 129–146. JAI Press, Greenwich, Conn (1984)

4. Lynch, J.F.: The equivalence of theorem proving and the interconnection problem.
ACM SIGDA Newsletter 5, 31–36 (1975)

5. Perković, L., Reed, B.: An improved algorithm for finding tree decompositions of
small width. Internat. J. Foundat. Comput. Sci. 11, 365–371 (2000)

6. Perl, Y., Shiloach, Y.: Finding two disjoint paths between two pairs of vertices in
a graph. J. ACM 25, 1–9 (1978)

7. Robertson, N., Seymour, P.D.: Graph Minors. XIII. The disjoint paths problem.
J. Comb. Theory, Ser. B 63, 65–110 (1995)

8. Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM J. Com-
put. 23, 780–788 (1994)

9. Shiloach, Y.: A polynomial solution to the undirected two paths problem. J.
ACM 27, 445–456 (1980)

10. Tholey, T.: Solving the 2-disjoint paths problem in nearly linear time. Theory
Comput. Systems 39, 51–78 (2006)

11. Woeginger, G.: A simple solution to the two paths problem in planar graphs.
Inform. Process. Lett. 36, 191–192 (1990)



Approximation Algorithms for Geometric

Intersection Graphs�

Klaus Jansen

Institut für Informatik, Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
kj@informatik.uni-kiel.de

Abstract. In this paper we describe together with an overview about
other results the main ideas of our polynomial time approximation
schemes for the maximum weight independent set problem (selecting a
set of disjoint disks in the plane of maximum total weight) in disk graphs
and for the maximum bisection problem (finding a partition of the vertex
set into two subsets of equal cardinality with maximum number of edges
between the subsets) in unit-disk graphs.

For a set V of geometric objects, the corresponding geometric intersection graph
is the undirected graph G = (V, E) with vertex set V and an set E of edges
between two vertices if the corresponding objects intersect. Assume that we are
given a set D = {D1, . . . , Dn} of n disks in the plane, where Di has diameter di

and center ci = (xi, yi). Disk Di and Dj intersect if dist(ci, cj) ≤ (di + dj)/2,
where dist(p, q) denotes the Euclidean distance between points p and q in the
plane. A disk graph is the intersection graph of a set of disks. We assume that
the input to our problems is the set D of disks, not only the corresponding
intersection graph. This is an important distinction, because determining for a
given graph whether it is a disk graph is known to be NP -hard [10], and hence
no efficient method is known for computing a disk representation if only the
intersection graph is given. Interestingly, every planar graph is a coin graph,
i.e. the intersection graph of a set of interior disjoint disks [13]. Therefore, the
class of disk graphs properly contains the class of planar graphs. Applications of
geometric intersection graphs are frequency assignment in networks [9,15] and
map labelling [1].

We are interested in approximation algorithms for NP -hard optimization
problems on disk graphs, in particular for the maximum weighted independent
set and maximum bisection problem. The goal of the maximum weight indepen-
dent set problem (MWIS) is to compute, for a given set of disks D with certain
vertex weights w1, . . . , wn, a subset U ⊂ D of disjoint non-overlapping disks
with maximum total weight w(U) =

∑

Di∈U wi. MIS refers to the unweighted
version of this problem (i.e. with wi = 1 for each disk Di ∈ D). The goal of the
maximum bisection problem (MBS) is to partition the disk set into two subsets

� Research of the author was supported in part by the EU Thematic Network APPOL
I + II, Approximation and Online Algorithms, IST-1999-14084 and IST-2001-32007.
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of the same cardinality (assuming that the number n of disks is even) and to
maximize the number of edges across the partition. For unit disk graphs (inter-
section graphs of disks with equal diameter) and planar graphs, MIS remains
NP -hard [4,7]. Recently, it was proved that MBS is also NP -hard for unit disk
graphs and planar graphs [5,14].

For a given set D of disks in the plane, let OPT (D) denote the maximum
value (the weight or the number of edges) of an optimum solution for MWIS and
MBS, respectively. An algorithm A is a ρ-approximation algorithm for MWIS
or MBS (with ρ ≥ 1) if it runs in time polynomial in the input size (the size
of the representation for D) and always computes a solution of total value at
least (1/ρ)OPT (D). A polynomial time approximation scheme is a family of
approximation algorithms {Aε|ε > 0} where Aε computes a solution of value at
least 1/(1 + ε)OPT (D) and runs in polynomial time in the input size for each
fixed ε > 0.

Hunt et al. [11] gave a PTAS for MWIS on unit disk graphs, and Baker [3] pro-
vided a PTAS for MWIS on planar graphs. For intersection graphs of disks with
arbitrary diameters, the best previous known approximation algorithm achieves
approximation ratio 5 for MIS [16]. In [11,15], the question was raised whether
a PTAS exists for disk graphs. As the class of disk graphs contains the class of
unit disk graphs and the class of planar graphs, a PTAS for disk graphs gener-
alizes the result for unit disk graphs due to Hunt et al. [11] and the result for
planar graphs due to Baker [3]. We resolve this question by presenting a PTAS
for MWIS in disk graphs (with given presentation) [6]. The basic idea of the
PTAS is as follows. The plane is partitioned into squares on different levels, and
some of the disks are removed from the input so that different squares on the
same level yield independent subproblems with respect to all disks that are on
this level or on a level with disks of smaller diameter. Furthermore, at most a
constant number of disks with larger diameter can be disjoint and intersect a
square on the current level. Therefore, all such sets can be enumerated in poly-
nomial time for each square, and a dynamic programming approach becomes
feasible. In addition to this result, we [6] propose also a PTAS for the minimum
weight vertex cover problem (MWVC).

The complexity and approximability status of MBS on planar graphs have
been long-standing open problems. Contrary to the polynomial time algorithm
of planar maximum cut (finding a partition into two subsets that maximizes the
number of edges with endpoints in both subsets) [8], planar maximum bisection
has been proven only recently to be NP-hard in exact setting by Jerrum [14].
The proof of this result can be found in [12]. We [12] have proved that there is a
PTAS for MBS in planar graphs. This is obtained by combining (via tree-typed
dynamic programming) the original Baker’s method [3] of dividing the input
graph into families of k-outerplanar graphs with our method of finding maximum
partitions of bounded treewidth graphs. For dense graphs, Arora, Karger, and
Karpinski [2] gave a PTAS for the maximum bisection problem. We [12] have
found a PTAS for the maximum bisection problem on unit disk graphs. It is
obtained by combining (again via tree-typed dynamic programming) the idea
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of Hunt et al. [11] of dividing the input graph defined by plane conditions into
family of subgraphs with the aforementioned methods in [2] of finding maximum
partitions of dense graphs.
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Abstract. We study the competitive ratio of certain online algorithms
for a well-studied class of load balancing problems. These algorithms
are obtained and analyzed according to a method by Crescenzi et al
(2004). We show that an exact analysis of their competitive ratio on
certain “uniform” instances would resolve a fundamental conjecture by
Caccetta and Häggkvist (1978). The conjecture is that any digraph on n
nodes and minimum outdegree d must contain a directed cycle involving
at most �n/d� nodes. Our results are the first relating this conjecture
to the competitive analysis of certain algorithms, thus suggesting a new
approach to the conjecture itself. We also prove that, on “uniform” in-
stances, the analysis by Crescenzi et al (2004) gives only trivial upper
bounds, unless we find a counterexample to the conjecture. This is in
contrast with other (notable) examples where the same analysis yields
optimal (non-trivial) bounds.

Keywords: Caccetta-Häggkvist conjecture, online load balancing, com-
petitive analysis.

1 Introduction

We consider a combinatorial problem which has applications to the construction
of competitive1 algorithms for the well-studied class of online load balancing
problems considered in e.g. [4,3,2,5] (see Section 1.2 for a formal definition).
Our work is motivated by a technique from Crescenzi et al. [8] in which the
simple greedy algorithm is “tuned” on the problem at hand. A rather informal
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Principles for Building Efficient Overlay Computers (AEOLUS).
1 Intuitively speaking, an online algorithm is c-competitive if there exists a constant

b such that the algorithm outputs a solution whose cost is at most c · opt + b where
opt is the optimum for the instance considered up to the current time step. In this
case, c is the competitive ratio of the algorithm.
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description of this technique is as follows (see Section 1.2 for a more formal
description):

Each online load balancing problem specifies a set of “feasible modifica-
tions” of the greedy algorithm and an “easy-to-compute” upper bound
c(·) on the competitive ratio. In particular, every such feasible modi-
fication M describes a modified version of the greedy algorithm whose
competitive ratio on this problem is at most c(M).

This approach has been applied to the linear and to the hierarchical server
topologies studied in [5] where it is rather easy to find an M such that c(M) results
in a dramatic improvement over the competitive ratio of the greedy algorithm
and matches the lower bound for the problem considered [8]. It is thus natural
to try to apply the same technique to more problems.

1.1 Our Contribution

In this work we consider a natural class of s-uniform online load balancing prob-
lems in which every task can be assigned to some s-subset of the n processors
(this subset can vary arbitrarily from task to task). The resulting combinatorial
problem is to determine (exactly) the minimum competitive bound C(n, s) which
is the smallest value that the above function c(·) can assume for s-uniform in-
stances. Our major contribution is to show that the minimum competitive bound
C(n, s) leads to an equivalent version of one of the most fundamental and intrigu-
ing conjectures in graph theory (which also accounts for dozens of connections
to other basic questions in combinatorics and number theory [14]):

Conjecture 1 (Caccetta-Häggkvist 1978 [7]). Any digraph on n nodes with
minimum outdegree at least d contains a directed cycle of length at most �n/d�.

We indeed prove that, if the above conjecture is true, then C(n, s) = n/s. Ob-
serve that, there is a trivial upper bound C(n, s) ≤ n/s (see Section 1.2). Thus
any improvement on the trivial bound would give a counterexample to the con-
jecture. At the heart of this result is another interesting number associated to the
analysis of s-uniform instances which we call the blind competitive bound B(n, s).
This number is “tightly coupled” with the Caccetta-Häggkvist conjecture since
we prove that, for s ≤

√
n,

B(n, s) = 1 + n − �n/s�

if and only if the conjecture holds. The number B(n, s) is the minimum for c(·)
when considering certain modifications M which result in “blind” algorithms
that assign tasks without even “looking at the processors”: tasks which can
be potentially allocated to the same subset of processors are all assigned to a
predetermined and fixed processor.

Our results can be seen as the hardness of obtaining any non-trivial bound
with the method of [8] in the case of s-uniform instances (this is in contrast with
other instances considered in [8]). These hardness results are in some sense of
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a “new type” since they do not rely on computational assumptions and they
are obtained by relating two (apparently) different problems. We feel one of the
main contributions of this work is to connect the analysis of online algorithms
to a fundamental conjecture in graph theory and to show that such an analysis
is as difficult as solving the latter.

From another point of view, our results suggest a possible way for proving
the conjecture by showing a lower bound on the competitive ratio of the online
algorithms yielded by certain modifications of greedy. Such bounds have also a
practical interest since these algorithms use only local information (namely, each
task can decide its own allocation by considering only the current load of the
processors in its associated subset). Blind algorithms are a notable example since
lower bounds are probably easier to prove, while any tight result on the com-
petitive ratio of the best blind algorithm for s-uniform instances would either
prove or disprove the conjecture. We stress that the Caccetta-Häggkvist conjec-
ture is considered a central and important problem in combinatorics, graph, and
number theory. Thirty years of significant efforts culminated in a large number
of deep connections among these areas. They have been the main subject of a
recent workshop held at the American Institute of Mathematics dedicated to
this conjecture (see Sullivan’s paper surveying these results [14]).

Roadmap. In Section 1.2 we introduce online load balancing, the technique in
[8], and the related combinatorial problems. In Section 2 we introduce and study
blind algorithms, and we relate the blind competitive bound to the Caccetta-
Häggkvist conjecture. We apply these results to the minimum competitive bound
in Section 3. Finally, we further discuss our results and their implications in
Section 4.

1.2 Online Load Balancing, Modified Greedy Algorithms, and
Their Analysis

In this section we go back to our initial application that is online load balancing of
temporary weighted tasks in the case of restricted assignment with no preemption.
Here each task t is specified by a subset St of processors that can execute that
task, a weight Wt, and a duration Dt. Tasks arrive one by one, each task t
needs to be allocated upon its arrival to one of the processors in St. No task
can be reallocated. The duration Dt is unknown and the task simply disappears
without any prior notice after Dt time units from its arrival. At every time step,
a processor has a load equal to the sum of the weights of those tasks currently
in the system and which have been assigned to it. The goal is to keep, over time,
the maximum processor load as low as possible. We are interested in designing
online algorithms with a small competitive ratio c, that is, the algorithm must
guarantee that the load of each processor never exceeds c · opt + b, where opt is
the optimum for the instance and b is a fixed constant.

In general, online algorithms with a “good” competitive ratio are designed
“ad-hoc” for a family F containing all possible subsets of processors that can be
associated to any task. A notable example is the hierarchical server topologies
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by Bar-Noy et al [5] where the “combinatorial structure” of F impacts signifi-
cantly on the competitive ratio of the algorithms. Moreover, “general purpose”
algorithms, such as the greedy one, are in general “far” from the optimal [3,4,5].
The approach in [8] constructs a “modified” version of the greedy algorithm for
the problem ‘F ’ as follows:

– In an offline phase, each S ∈ F is mapped into a non-empty subset M(S) ⊆
S, for some function M(·).

– In the online phase, each task t is allocated to the currently least-loaded
processor in M(St).

Notice that we limit ourselves to a subset of available processors. As shown in [8],
by carefully choosing M, the modified greedy algorithm avoids allocations that
are “too far” from the optimum. The main result in [8] is that the competitive
ratio of this algorithm is at most 1 + cF(M), with

cF(M) := max
S∈F

|AdversaryF(S, M)|
|M(S)| , (1)

where AdversaryF(S, M) consists of the union of all subsets S′ in F such that
M(S′) intersects M(S). Intuitively, the tasks allocated to M(S) could have been
assigned only to processors in AdversaryF (S, M).

In this work, we focus on s-uniform instances, that is, the case in which F
contains all s-subsets of the n processors. This is a natural restriction modeling
problems where each task is guaranteed (only) to be assignable to s out of the n
processors (though this set can change arbitrarily from task to task). With the
minimum competitive bound C(n, s) we ask how small the bound in (1) can be
depending on n and s (see Definition 2). Notice that the resulting algorithm uses
only local information as it assigns a task t by simply considering the current
load of (a subset of) the processors that can execute that task. When this subset,
which is specified by M, consists of a single processor, the corresponding algo-
rithm requires “no information” on the processors’ loads. The blind competitive
bound B(n, s) is defined as the minimum competitive bound, when restricting
to these “blind” algorithms (see Definition 1). This number is a tight bound
on the competitive ratio of these algorithms and its analysis is fundamental for
the minimum competitive bound too. Both numbers initiate the study of online
algorithms for load balancing problems which use only local information. In our
view, one of the main contributions of this work is a stringent connection be-
tween the competitive analysis of certain local online load balancing algorithms
and the Caccetta-Häggkvist conjecture.

Preliminaries and notation. We are given a family F of distinct subsets of an
n-set (the latter, representing the processors). We let Feas(F) be the set of all
functions M mapping every subset S ∈ F into a nonempty subset M(S) ⊆ S.
We let

AdversaryF (S, M) :=
⋃

S′∈F : M(S′)∩M(S) �=∅
S′.
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In the sequel, s denotes the cardinality of the sets in F . We will always assume
that s and n are positive integers satisfying 2 ≤ s ≤ n (the case s = 1 is
trivial and not interesting for the application). Observe that AdversaryF(S, M)
contains at most n elements (i.e., the n processors). Thus, the identity function
Mtrivial(S) = S yields a trivial upper bound :

cF(Mtrivial) ≤ n/s. (2)

We typically consider families containing all possible s-subsets of an n-set. In
this case we write Feas(n, s) and omit the subscript ‘F ’.

2 Blind Algorithms and the Caccetta-Häggkvist
Conjecture

A simple (and somewhat naive) class of (online) algorithms assign tasks in a
fixed manner without “looking” at the current loads of the processors: every
task t is allocated to the processor p(St) for some function p(·) (thus ignoring
the allocation of all other tasks). These algorithms and their analysis via the
upper bound in (1) are captured by the following:

Definition 1. A blind algorithm is a function M mapping every s-subset of the
n processors into a 1-subset of this s-subset. The blind competitive ratio is

B(n, s) := min
M∈Blind(n,s)

{c(M)},

where Blind(n, s) consists of all blind algorithms.

We stress that a simple argument shows that, for blind algorithms, the upper
bound in (1) gives a tight analysis:

Fact 2. The competitive ratio of any blind algorithm M is exactly c(M). Hence,
B(n, s) is the minimum competitive ratio over all blind algorithms.

In this section, we show that B(n, s) = 1 + n − �n/s�, where the lower bound
holds if and only if the Caccetta-Häggkvist conjecture (see Conjecture 1) is true.
The upper and the lower bounds will follow from the next two lemmata.

Lemma 1. Let G be any digraph on n nodes with minimum outdegree d and
not containing any directed cycle of length at most s. Then there exists M ∈
Blind(n, s) with c(M) = n − d, that is, B(n, s) ≤ n − d.

Proof. We construct M ∈ Blind(n, s) as follows. We identify the nodes of G with
the n processors. For every s-subset S we search for an a ∈ S such that in G
there is no edge from a to another element in S. Observe that such an element
must exist since otherwise we have a directed cycle involving only elements in S,
and thus a directed cycle of length at most s. We then set M(S) := {a}. Observe
that, if (a, b) is an edge in G and an s-subset T contains b, then it cannot be the
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case M(T ) = {a}. This implies that the set Adversary(S, M) does not contain
any node in the outneighborhood of a. Since node a has outdegree at least d,
this set has cardinality at most n − d. Since |M(S)| = 1 for all S, from (1) we
obtain c(M) = maxS |Adversary(S, M)| ≤ n − d. �	

Lemma 2. Let n, s, and d ≥ s be positive integers such that B(n, s) ≤ n − d.
Then there exists a digraph G on at most n nodes with minimum outdegree at
least d and not containing a directed cycle of length at most s.

Proof. Let G = G(M) be the digraph on n nodes containing the edge (a, b) if
and only if there exists no S such that b ∈ S and M(S) = {a}. By construction
the outneighborhood of a contains all but the elements in Adversary(S, M), that
is, its outdegree is n−|Adversary(S, M)|. Since |Adversary(S, M)| ≤ B(n, s), the
outdegree of any node a is at least n − B(n, s) ≥ d. Hence, the graph G has
minimum outdegree dG ≥ d.

We observe that the subgraph induced by any subset of s nodes must contain
a sink, that is, a node having outdegree 0 in that subgraph: Indeed, for any S,
the element a such that M(S) = {a} must be a sink. In particular, there is no
directed cycle of length s.

Using this fact, we iteratively remove nodes from G and obtain a subgraph G′

with n′ ≤ n nodes, without directed cycles of length at most s, and minimum
outdegree equal to the minimum outdegree d of G. Towards this end, we proceed
as follows. While we can pick a set C of nodes that form a directed cycle of length
at most s − 1 in G′ (recall that there is no directed cycle of length s), we add
to C, one by one, nodes of G′ that have an edge directed to the current set of
nodes. This process must stop when reaching at most s−1 nodes since otherwise,
when C reaches cardinality s, by construction, it does not contain a sink, thus
a contradiction. Notice that there is no edge from a node in G′ − C to a node
in C. We can thus remove the nodes in C from the graph without decreasing its
minimum outdegree.

At the end of this process, the graph G′ does not contain any directed cycle
of length s or smaller and its minimum outdegree is at least dG ≥ d. Observe
that G′ cannot be empty since every removed set C as above must have some
outgoing edge (because of d ≥ s ≥ |C|) and this edge cannot be ingoing to the
previously removed components. �	

Lemmata 1 and 2 will give us the upper and the lower bound:

Theorem 3. For any n and s ≤
√

n, it holds that

B(n, s) = 1 + n − �n/s�

where the lower bound holds unless Conjecture 1 is false.

Proof. Let us set d = max{s, �n/s�}. By contradiction, assume B(n, s) ≤ n − d.
Lemma 2 implies the existence of a digraph G on n′ ≤ n nodes with minimum
outdegree d ≥ �n′/s� and not containing directed cycles of length s or smaller.
However, Conjecture 1 implies that G must have a directed cycle of length at
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most �n′/d� ≤ �n′/�n′/s�� ≤ �n′/(n′/s)� = s, thus a contradiction. Since B(n, s)
is integer, it must be B(n, s) ≥ 1 + n − d. Since s ≤

√
n, we have d = �n/s�,

which proves the lower bound. In order to prove the upper bound, we consider
the following digraph G, first described by Behzad, Chartrand and Wall [6]. We
let [n] = {0, . . . , n − 1} be the set of nodes. For every node x ∈ [n], we let its
out-neighborhood being the d − 1 nodes in the interval [(x + 1) mod n, (x + d −
1) mod n]. By construction, the resulting digraph G has minimum outdegree
d − 1 and, since d − 1 = �n/s� − 1 < n/s, does not have any directed cycle of
length at most s. Lemma 1 thus implies B(n, s) ≤ n − (d − 1) = n − �n/s� + 1,
that is the upper bound. �	
Remark 1. Notice that the Caccetta-Häggkvist conjecture is not “interesting”
for d > n/2 since in this case it is easy to show that a two-cycle must exist,
i.e., the conjecture holds. Lemma 2 implies that B(n, 2) = n/2, for any n. In
contrast, proving a tight bound for B(n, 3) is the first hard case: It corresponds
to the case d = n/3 of the conjecture which is one of the most studied [14,
Section 2.2].

It is possible to settle (weaker) lower bounds on B(n, s) by using some “ap-
proximate” results for the Caccetta-Häggkvist conjecture. It is known that the
conjecture holds if we consider some “additive” constant α. That is, a minimum
outdegree d guarantees that every digraph on n nodes must have a directed cycle
of length at most n/d + α. Currently, the best known bound is α = 73 by Shen
[13]. This type of results imply the following:

Theorem 4. For any n and α < s ≤
√

n + α/2, it holds that B(n, s) ≥ 1 + n −
�n/(s − α)�.
Proof. Since s > α, we can consider d = �n/(s − α)�. By contradiction, assume
B(n, s) ≤ n − �n/(s − α)� = n − d. From s ≤ √

n + α/2, we have d ≥ s and
thus Lemma 2 implies that there exists a digraph on n nodes with minimum
outdegree d and not containing any directed cycle of length s or smaller. Since
n/d + α = n/�n/(s − α)� + α ≤ n/(n/(s − α)) + α = (s − α) + α = s, this graph
does not contain a directed cycle of length n/d + α or smaller. This contradicts
the definition of α. Since B(n, s) is integer, it must be B(n, s) ≥ 1 + n − d and
the theorem follows. �	
For s = 3, Shen [12] proved another approximate version of the conjecture: if
the minimum outdegree is at least μ · n, then there is a directed triangle, where
μ > 1/3 is a “multiplicative” constant (see also [14, Section 2.3]). This result,
combined with Lemma 2, yields the following lower bound:

Theorem 5. For any n, it holds that B(n, 3) ≥ 1+n−μ ·n, where μ = 3−
√

7 =
0.3542 · · ·.

3 The Minimum Competitive Bound

In this section, we turn our attention to “less naive” algorithms which can be
obtained with the method described in Section 1.2. In particular, we study the
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bound in (1), again when F consists of all s-subsets of the n processors (for the
sake of readability, we omit the subscript ‘F ’):

Definition 2. The minimum competitive bound is

C(n, s) := min
M∈Feas(n,s)

{c(M)},

where Feas(n, s) consists of all functions M(·) mapping every s-subset of n
processors into a non-empty subset M(S) ⊆ S.

Notice that we have a trivial upper bound C(n, s) ≤ n/s (see Equation 2). We
prove that C(n, s) = n/s, unless we disprove Conjecture 1. That is, the trivial
upper bound is likely the best possible. We will first prove lower bounds for some
special cases (these results do not require Conjecture 1).

Lemma 3. Let M ∈ Feas(n, s) such that |M(S)| ≥ 2, for all s-subset S. Then,
there exists an s-subset T for which |Adversary(T, M)| = n.

Proof. Without loss of generality, we can assume that |M(S)| = 2, for every S.
Indeed, if we shrink all M(S) into a two-set M′(S) ⊆ M(S), we obtain a function
M′ ∈ Feas(n, s) satisfying Adversary(S, M′) ⊆ Adversary(S, M).

We use Adversary(S) as a shorthand for Adversary(S, M) and assume, by
way of contradiction, that |Adversary(S)| < n, for all S of size s. Using this
fact, we give an iterative way to define a suitable sequence B1 ⊂ B2 ⊂ · · · ⊂ Bk

as follows. We start from an arbitrary s-subset S1 and let B1 := M(S1). At
each iteration i, we “expand” the current Bi into a new set Bi+1 := Bi ∪
{bi} ∪ M(Si+1), where bi and Si+1 are defined as follows. Each Si is an s-
subset and thus the hypothesis |Adversary(Si)| < n implies that we can chose
bi ∈ Adversary(Si). We then define Si+1 as an s-subset such that bi ∈ M(Si+1),
if such a set exists; otherwise, Si+1 is an arbitrarily chosen s-subset containing
Bi and bi. Below we will show that the set Bi+1 adds 2 or 3 elements to the set
Bi, thus implying that we can stop when s − 2 ≤ |Bk| ≤ s.

Claim (1). M(S) cannot intersect Bi if S is an s-subset containing Bi ∪ {bi}.

Proof of Claim (1). We proceed by induction on i. For i = 1, if M(S) intersects
B1 = M(S1), then Adversary(S1) contains S. Since b1 ∈ S, this contradicts
the definition of b1. Now assume the claim holds for i − 1 and let S be an
s-subset containing Bi ∪ {bi}. Since Bi = Bi−1 ∪ {bi−1} ∪ M(Si), S contains
Bi−1 ∪ {bi−1}, and the inductive hypothesis implies that M(S) cannot intersect
Bi−1. If M(S) intersects M(Si) then, since bi−1 ∈ S, we have the contradiction
bi ∈ Adversary(Si). If M(S) contains bi−1, the definition of Si implies that
bi−1 ∈ M(Si). (Recall that bi−1 ∈ M(S) only in the case there is no s-subset
S with bi−1 ∈ M(S).) But then M(S) would again intersect M(Si), which leads
to the same contradiction as above. The inductive step thus follows from Bi =
Bi−1 ∪ {bi−1} ∪ M(Si). The claim thus follows. �

Since |M(S)| = 2, Claim (1) implies that Bi+1 is obtained from Bi by adding at
least two (and at most three) new elements not in Bi. We can thus define k as
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the first integer such that s − 2 ≤ |Bk| ≤ s. We next show that in each of the
three cases a contradiction arises:

1. For |Bk| = s−2, we consider any s-subset S(x) := Bk ∪{bk}∪{x}, with x ∈
Bk ∪ {bk}. Claim (1) implies M(S(x)) = {bk, x}, and thus Adversary(S(x))
contains also all elements not in Bk ∪ {bk}, that is, |Adversary(S(x))| = n.

2. For |Bk| = s − 1, we simply observe that for S := Bk−1 ∪ {bk−1} Claim (1)
yields M(S) = {bk−1}, contradicting the hypothesis |M(S)| ≥ 2 for all s-
subsets S.

3. For |Bk| = s, Bk−1 ∪ {bk−1} must have size s − 2, since |Bk−1| < s − 2. For
every s-subset S(x, y) := Bk−1 ∪{bk−1, x, y} Claim (1) implies M(S(x, y)) =
{x, y}. If we keep x fixed and consider all y not in this set, we obtain the
contradiction |Adversary(S(x, y))| = n.

This concludes the proof of the lemma. �	

Observe that the above result says that, if C(n, s) < n/s, then the corresponding
M must be such that |M(S)| = 1 for at least one S. In order to prove the lower
bound C(n, s) = n/s, we will make use of the following result showing that,
without loss of generality, we can restrict ourselves to optimal modifications M
having a “canonical” structure (the result applies to any family F of s-subsets):

Lemma 4. For any M ∈ Feas(F), there exists an Mc ∈ Feas(F) such that
cF(Mc) ≤ cF(M) and Mc is canonical, that is, Mc(S) ⊂ Mc(T ) for all S, T ∈ F .

Proof. Consider two s-subsets S and T such that M(S) ⊂ M(T ). (Otherwise
the lemma holds.) If we shrink M(T ) to M(S), what we obtain is a new M′ ∈
Feas(F) such that M′(T ) = M(S) and M′(U) = M(U) for U = T . This implies
AdversaryF(U, M′) ⊆ AdversaryF(U, M) for all s-subsets U , and that

|AdversaryF (T, M′)|
|M′(T )| ≤ |AdversaryF(S, M)|

|M(S)| ;

max
U �=T

|AdversaryF (U, M′)|
|M′(U)| ≤ max

U �=T

|AdversaryF(U, M)|
|M(U)| .

This yields cF (M′) ≤ cF (M). To obtain the final family Mc it suffices to iterate
the above transformation at most |F| times. (At every iteration we let M being
the family obtained in the previous iteration and pick S and T as above with
M(S) not containing another M(U).) The lemma thus follows. �	

We first give a tight bound for some special cases for which we do not need the
Caccetta-Häggkvist conjecture:

Theorem 6. For every n, if s ≥ √
n or s = 2, then it holds that C(n, s) = n/s.

Proof. Let M be such that c(M) = C(n, s). We first consider s ≥
√

n. If there
exists one S with |M(S)| = 1, then c(M) ≥ |Adversary(S, M)| ≥ s ≥ n/s,
where the two inequalities follow from S ∈ Adversary(S, M) and from s ≥

√
n,
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respectively. Otherwise, in the case |M(S)| = 1 for every S, Lemma 3 implies
that c(M) ≥ n/s. (Recall that |M(S)| ≤ |S| ≤ s.)

Let us now consider the case s = 2. From Lemma 4 we can assume that M
is canonical. This implies that the n processors are partitioned into two sets N1
and N2 such that the following holds. For every two-subset S ⊆ Ni, it holds
that |M(S)| = i, with i = 1, 2. Let n1 := |N1| and n2 := |N2|, and let Fi

denote the family of all two-subsets of Ni, for i = 1, 2. Let M′ be the function M
restricted F1 and observe that M′ ∈ Blind(n1, 2). Hence, there is one S ⊆ N1
for which |AdversaryF1

(S, M′)| ≥ B(n1, 2) = n1/2 (see Remark 1). That is,
Adversary(S, M) contains at least n1/2 elements from N1. We next show that
it must also contain all elements x in N2. Indeed, for every two-subset S(x)
consisting of x ∈ N2 and M(S), Lemma 4 implies that M(S(x)) = M(S), and thus
x ∈ Adversary(S, M). Hence, |Adversary(S, M)| ≥ n1/2+n2 = n1/2+(n−n1) =
n − n1/2 ≥ n/2, where the last inequality follows from n1 ≤ n. �	

Finally, from Lemma 3 we obtain the main result of this section:

Theorem 7. For every n and 2 < s <
√

n, it holds that C(n, s) = n/s. The
lower bound holds unless Conjecture 1 is false. Hence, the trivial upper bound
C(n, s) ≤ n/s is the best possible one.

Proof. Let M ∈ Feas(n, s) with c(M) = C(n, s). From Lemma 4, we can assume
M being canonical. Because of Lemma 3, the theorem holds if |M(S)| ≥ 2 for
all s-subsets S. Otherwise, we consider the subset N1 of those processors x such
that {x} = M(S), for some S. Let N2 be the complement of N1, that is, the
subset of processors not in N1. From the hypothesis, we have 3 ≤ s < n/s. We
consider the following two cases for n2 := |N2|:

1. n2 < n/s. In this case n1 := |N1| = n − n2 > n − n/s. Since M is canonical,
for every s-subset T contained in N1, it must be the case |M(T )| = 1. Let F1
denote the family of all s-subsets of N1 and let M′ be the function obtained by
restricting M to F1. Observe that M′ is a function in Blind(n1, s). Hence,
there exists S ∈ N1 such that C(n, s) ≥ |Adversary(S, M′)| ≥ B(n1, s).
From the proof of Theorem 3, if Conjecture 1 holds, then B(n1, s) ≥ 1 +
n1 − max{s, �n1/s�} > 1 + n − n/s − max{s, �n1/s�} ≥ 1 + n − n/s −
max{s, �n/s�} = 1 + n − n/s − �n/s� > n − 2n/s, where the last inequality
follows from �n/s� < 1 + n/s. Since s ≥ 3, we have n − 2n/s ≥ n/s, thus
implying C(n, s) ≥ B(n1, s) > n/s.

2. n2 ≥ n/s. By definition of N1 and N2, every s-subset S contained in N2 must
satisfy |M(S)| ≥ 2. Since s <

√
n, we have n2 ≥ n/s > s and thus N2 con-

tains some s-subset. Let us consider the function M′ obtained by restricting
M to the s-subsets of N2. Observe that M′ ∈ Feas(n2, s). Lemma 3 implies
that there exists S ⊆ N2 with Adversary(S, M) containing all the elements
in N2. If the set Adversary(S, M) contains also N1, then we clearly have
C(n, s) ≥ n/s. Otherwise, we consider an x ∈ N1 with x ∈ Adversary(S, M).
For {x} = M(T ), if Adversary(T, M) contains N2, then C(n, s) ≥ n2 > n/s
(recall that |M(T )| = 1) and the theorem holds. Otherwise, we can pick a
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y ∈ N2 with y ∈ Adversary(T, M). Observe that M(S) must contain at least
s − 1 elements, unless C(n, s) ≥ n/s. We can thus construct an s-subset
S′ := {x}∪R′ with R′ containing y and other s−2 elements from M(S). Ob-
serve that M(S′) cannot contain x since otherwise M(S′) ∩ M(T ) = {x} = ∅
and thus y ∈ S′ ⊆ Adversary(T, M), contradicting the definition of y. Simi-
larly, M(S′) cannot contain any of the elements in R′ \ {y} since otherwise
M(S′) ∩ M(S) = ∅ and thus x ∈ S′ ⊆ M(S), contradicting the definition
of x. Hence, it must be the case M(S′) = {y}, contradicting y ∈ N1 (since
y ∈ N2). �	

4 Conclusions and Open Questions

We have applied the approach by Crescenzi et al [8] to a natural class of s-
uniform instances, which model the problem version in which the only available
information is that each task is assignable to s out of the n processors, for some
known constant s. We have shown that this approach is unlikely to lead to any
“satisfactory” upper bound. Namely, the minimum competitive bound C(n, s)
is equal to the trivial n/s upper bound, unless we find a counterexample to
the Caccetta-Häggkvist conjecture [14]. Even for rather limited algorithms, for
which the analysis in [8] is tight, an exact answer is “equivalent” to the conjecture
above. That is, the competitive ratio B(n, s) of the best algorithm in this class
can be determined for all s and n if and only if we resolve the conjecture.

We consider the study of these algorithms interesting by itself since they only
require local information. Indeed, the online load balancing problem considered
here arises in many practical situations (e.g., when connecting mobile devices
requiring different bandwidth to one of the “geographically close” base stations).
The natural greedy algorithm can have a rather unsatisfactory competitive ratio
in several cases [3,5], which motivated the development of more sophisticated
“ad-hoc” algorithms [4,5]. The latter are not local, though their competitive
ratio is significantly better than greedy one. To the best of our knowledge, there
is no prior study of local online algorithms for this problem version (apart from
the tight bound Θ(n2/3) on the greedy [4]). Online local algorithms for a different
task allocation problem have been studied by Kuhn et al [9]. In their problem,
the goal is to maintain (roughly) the same number of tasks on each processor,
and tasks can be moved only “locally”, i.e., between adjacent processors.

We conclude observing that our results might be used to write a computer
program to check the Caccetta-Häggkvist conjecture. Observe that, if we believe
the conjecture is true, then a program which verifies it for a fixed n and d, will
have to go through all possible digraphs on n nodes and minimum outdegree d.
This is because we have to show that there is no way to avoid a directed cycle
with �n/d� nodes. Theorem 3 gives an alternative that is to come up with an
(efficient) algorithm to compute B(n, s). Obviously, this algorithm should not
rely on the Caccetta-Häggkvist conjecture, that is, it should be possible to prove
its correctness independently from the conjecture (e.g., the algorithm returns an
optimal modification M for any given F containing only s-subsets). Notice that,
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once again, the case s = 3 seems to be the “first” difficult one. Indeed, for s = 2
the optimal modification M for any family F reduces to the problem of orienting
the edges of an indirected graph in order to minimize the maximum indegree
(see Aichholzer et al [1] and Nash-Williams [11]). Such optimal orientation can
be computed with standard flow techniques, thus yielding an optimal algorithm
for s = 2 (see the full version of this work [10]). Unfortunately, the results do
not apply to s = 3, which remains an interesting open question.
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Abstract. For a 3-colourable graph G, the 3-colour graph of G, de-
noted C3(G), is the graph with node set the proper vertex 3-colourings
of G, and two nodes adjacent whenever the corresponding colourings
differ on precisely one vertex of G. We consider the following question :
given G, how easily can we decide whether or not C3(G) is connected? We
show that the 3-colour graph of a 3-chromatic graph is never connected,
and characterise the bipartite graphs for which C3(G) is connected. We
also show that the problem of deciding the connectedness of the 3-colour
graph of a bipartite graph is coNP-complete, but that restricted to planar
bipartite graphs, the question is answerable in polynomial time.

1 Introduction

Throughout this paper a graph G = (V, E) is simple, loopless and finite. We
always regard a k-vertex-colouring of a graph G as proper; that is, as a function
α : V → {1, 2, . . . , k} such that α(u) �= α(v) for any uv ∈ E. For a positive
integer k and a graph G, we define the k-colour graph of G, denoted Ck(G), as
the graph that has the k-colourings of G as its node set, with two k-colourings
joined by an edge in Ck(G) if they differ in colour on just one vertex of G. We
say that G is k-mixing if Ck(G) is connected.

Continuing a theme begun in an earlier paper [2], we investigate the con-
nectedness of Ck(G) for a given G. The connectedness of the k-colour graph is
an issue of interest when trying to obtain efficient algorithms for almost uni-
form sampling of k-colourings of a given graph. In particular, Ck(G) needs to be
connected for the single-site Glauber dynamics of G ( a Markov chain defined
on the k-colour graph of G ) to be rapidly mixing. For further details, see, for
example, [5,6] and references therein.

In [2] it was shown that if G has chromatic number k for k = 2, 3, then G
is not k-mixing, but that, on the other hand, for k ≥ 4, there are k-chromatic
graphs that are k-mixing and k-chromatic graphs that are not k-mixing. In this
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paper, we look further at the case k = 3: we know 3-chromatic graphs are
not 3-mixing, but what about bipartite graphs? Examples of 3-mixing bipartite
graphs include trees and C4, the cycle on 4 vertices. On the other hand, all cycles
except C4 are not 3-mixing — see [2] for details. In Theorem 1, we distinguish
between 3-mixing and non-3-mixing bipartite graphs in terms of their structure
and the possible 3-colourings they may have. As G is k-mixing if and only if every
connected component of G is k-mixing, we will take our “argument graph” G to
be connected.

Some terminology is required to state the result. If v and w are vertices of a
bipartite graph G at distance two, then a pinch on v and w is the identification
of v and w ( and the removal of any double edges produced ). And G is pinchable
to a graph H if there exists a sequence of pinches that transforms G into H .

Given a 3-colouring α, the weight of an edge e = uv oriented from u to v is

w(−→uv, α) =
{

+1, if α(u)α(v) ∈ {12, 23, 31};
−1, if α(u)α(v) ∈ {21, 32, 13}. (1)

To orient a cycle means to orient each edge on the cycle so that a directed cycle
is obtained. If C is a cycle, then by

−→
C we denote the cycle with one of the two

possible orientations. The weight W (
−→
C , α) of an oriented cycle

−→
C is the sum of

the weights of its oriented edges.

Theorem 1. Let G be a connected bipartite graph. The following are equivalent :

(i) The graph G is not 3-mixing.
(ii) There exists a cycle C in G and a 3-colouring α of G with W (

−→
C , α) �= 0.

(iii) The graph G is pinchable to the 6-cycle C6.

We also determine the computational complexity of the following decision
problem.

3-Mixing

Instance : A connected bipartite graph G.
Question : Is G 3-mixing?

Theorem 2. The decision problem 3-Mixing is coNP-complete.

We also prove, however, that there is a polynomial algorithm for the restriction
of 3-Mixing to planar graphs. We remark that this difference in complexity con-
trasts with many other well-known graph colouring problems where the planar
case is no easier to solve.

Theorem 3. Restricted to planar bipartite graphs, the decision problem
3-Mixing is in the complexity class P.

Organization of the paper: we prove Theorems 1, 2 and 3 in Sections 2, 3 and 4
respectively.



168 L. Cereceda, J. van den Heuvel, and M. Johnson

2 Characterising 3-Mixing Bipartite Graphs

To prove Theorem 1, we need some definitions, terminology and lemmas.
For the rest of this section, let G = (V, E) denote a connected bipartite graph

with vertex bipartition X, Y . We use α, β, . . . to denote specific colourings, and,
having defined the colourings as nodes of C3(G), the meaning of, for example, the
path between two colourings should be clear. We denote the cycle on n vertices
by Cn, and will often describe a colouring of Cn by just listing the colours as
they appear on consecutive vertices.

Given a 3-colouring α of G, we define a height function for α with base X as
a function h : V → Z satisfying the following conditions. ( See [1,4] for other,
similar height functions. )
H1For all v ∈ X , h(v) ≡ 0 (mod 2); for all v ∈ Y , h(v) ≡ 1 (mod 2).
H2For all uv ∈ E, h(v) − h(u) = w(−→uv, α) ( ∈ {−1, +1} ).
H3For all v ∈ V , h(v) ≡ α(v) (mod 3).

If h : V → Z satisfies conditions H2, H3 and also
H1′ For all v ∈ X , h(v) ≡ 1 (mod 2); while for v ∈ Y , h(v) ≡ 0 (mod 2).

then h is said to be a height function for α with base Y .
Observe that for a particular colouring of a given G, a height function might

not exist. An example of this is the 6-cycle C6 coloured 1-2-3-1-2-3.
Conversely, however, a function h : V → Z satisfying conditions H1 and H2

induces a 3-colouring of G : the unique α : V → {1, 2, 3} satisfying condition H3,
and h is in fact a height function for this α. Observe also that if h is a height
function for α with base X , then so are h + 6 and h − 6; while h + 3 and h − 3
are height functions for α with base Y . Because we will be concerned solely
with the question of existence of height functions, we assume henceforth that
for a given G, all height functions have base X . Thus we let HX(G) be the set
of height functions with base X corresponding to some 3-colouring of G, and
define a metric m on HX(G) by setting

m(h1, h2) =
∑

v∈V

|h1(v) − h2(v)|,

for h1, h2 ∈ HX(G). Note that condition H1 above implies that m(h1, h2) is
always even.

For a given height function h, h(v) is said to be a local maximum ( respectively,
local minimum ) if h(v) is larger than ( respectively, smaller than ) h(u) for all
neighbours u of v. Following [4], we define the following height transformations
on h.
– An increasing height transformation takes a local minimum h(v) of h and

transforms h into the height function h′ given by h′(x) =
{

h(x) + 2, if x = v;
h(x), if x �= v.

– A decreasing height transformation takes a local maximum h(v) of h and

transforms h into the height function h′ given by h′(x) =
{

h(x) − 2, if x = v;
h(x), if x �= v.
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Notice that these height transformations give rise to transformations between
the corresponding colourings. Specifically, if we let α′ be the 3-colouring corre-
sponding to h′, an increasing transformation yields α′(v) = α(v) − 1, while a
decreasing transformation yields α′(v) = α(v) + 1, where addition is modulo 3.

The following lemma shows that colourings with height functions are con-
nected in C3(G). It is a simple extension of the range of applicability of a similar
lemma appearing in [4].

Lemma 1 ([4]). Let α, β be two 3-colourings of G with corresponding height
functions hα, hβ. Then there is a path between α and β in C3(G).

Proof. We use induction on m(hα, hβ). The lemma is trivially true when
m(hα, hβ) = 0, since in this case α and β are identical.

Suppose therefore that m(hα, hβ) > 0. We show that there is a height transfor-
mation transforminghα into someheight functionhwithm(h, hβ)= m(hα, hβ)−2,
from which the lemma follows.

Without loss of generality, let us assume that there is some vertex v ∈ V with
hα(v) > hβ(v), and let us choose v with hα(v) as large as possible. We show
that such a v must be a local maximum of hα. Let u be any neighbour of v. If
hα(u) > hβ(u), then it follows that hα(v) > hα(u), since v was chosen with hα(v)
maximum, and |hα(v) − hα(u)| = 1. If, on the other hand, hα(u) ≤ hβ(u), we
have hα(v) ≥ hβ(v) + 1 ≥ hβ(u) ≥ hα(u), which in fact means hα(v) > hα(u).

Thus hα(v) > hα(u) for all neighbours u of v, and we can apply a decreasing
height transformation to hα at v to obtain h. Clearly m(h, hβ) = m(hα, hβ)− 2.

�	

The next lemma tells us that for a given 3-colouring, non-zero weight cycles
are, in some sense, the obstructing configurations forbidding the existence of a
corresponding height function.

Lemma 2. Let α be a 3-colouring of G with no corresponding height function.
Then G contains a cycle C for which W (

−→
C , α) �= 0.

Proof. For a path P in G, let
−→
P denote one of the two possible directed paths

obtainable from P , and let

W (
−→
P , α) =

∑

e∈E(
−→
P )

w(e, α),

where w(e, α) takes values as defined in (1).
Notice that if a colouring does have a height function, it is possible to con-

struct one by fixing a vertex x ∈ X , giving x an appropriate height ( satisfying
properties H1–H3 ) and then assigning heights to all vertices in V by following
a breadth-first ordering from x.

Whenever we attempt to construct a height function h for α in such a fash-
ion, we must come to a stage in the ordering where we attempt to give some
vertex v a height h(v) and find ourselves unable to because v has a neighbour u
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with a previously assigned height h(u) and |h(u) − h(v)| > 1. Letting P be a
path between u and v formed by vertices that have been assigned a height, and
choosing the appropriate orientation of P , we have w(

−→
P , α) = |h(u)−h(v)|. The

lemma now follows by letting C be the cycle formed by P and the edge uv. �	

The following lemma is obvious.

Lemma 3. Let u and v be vertices on a cycle C in a graph G, and suppose
there is a path P between u and v in G internally disjoint from C. Let α be a
3-colouring of G. Let C′ and C′′ be the two cycles formed from P and edges of C,
and let

−→
C′,

−→
C′′ be the orientations of C′, C′′ induced by an orientation

−→
C of C

( so the edges of P have opposite orientations in
−→
C′ and

−→
C′′ ). Then W (

−→
C , α) =

W (
−→
C′, α) + W (

−→
C′′, α).

Note this tells us that W (
−→
C , α) �= 0 implies W (

−→
C′, α) �= 0 or W (

−→
C′′, α) �= 0.

Proof of Theorem 1. Let G be a connected bipartite graph.
(i) =⇒ (ii). Suppose C3(G) is not connected. Take two 3-colourings of G, α

and β, in different components of C3(G). By Lemma 1 we know at least one of
them, say α, has no corresponding height function, and, by Lemma 2, there is a
cycle C in G with W (

−→
C , α) �= 0.

(ii) =⇒ (iii). Let G contain a cycle C with W (
−→
C , α) �= 0 for some 3-

colouring α of G. Because W (
−→
C4, β) = 0 for any 3-colouring β of C4, it follows

that C = Cn for some even n ≥ 6. If G = C, then it is easy to find a sequence of
pinches that will yield C6. If G is C plus some chords, then, by Lemma 3, there
is a smaller cycle C′ with W (

−→
C′, α) �= 0. Thus if G �= C, we can assume that

V (G) �= V (C), and we describe how to pinch a pair of vertices so that (ii) remains
satisfied ( for a specified cycle with G replaced by the graph created by the pinch
and α replaced by its restriction to that graph; also denoted α ); by repetition,
we can obtain a graph that is a cycle and, by the previous observations, the
implication is proved.

We shall choose vertices coloured alike to pinch so that the restriction of α
to the graph obtained is well-defined and proper. If C has three consecutive
vertices u, v, w with α(u) = α(w), pinching u and w yields a graph containing
a cycle C′ = Cn−2 with W (

−→
C′, α) = W (

−→
C , α). Otherwise C is coloured 1-2-3-

· · · -1-2-3. We can choose u, v, w to be three consecutive vertices of C, such that
there is a vertex x /∈ V (C) adjacent to v. Suppose, without loss of generality,
that α(x) = α(u), and pinch x and u to obtain a graph in which W (

−→
C , α) is

unchanged.
(iii) =⇒ (i). Suppose G is pinchable to C6. Take two 3-colourings of C6

not connected by a path in C3(C6) — 1-2-3-1-2-3 and 1-2-1-2-1-2, for example.
Considering the appropriate orientation of C6, note that the first colouring has
weight 6 and the second has weight 0. We construct two 3-colourings of G not
connected by a path in C3(G) as follows. Consider the reverse sequence of pinches
that gives G from C6. Following this sequence, for each colouring of C6, give
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every pair of new vertices introduced by an “unpinching” the same colour as the
vertex from which they originated. In this manner we obtain two 3-colourings
of G, α and β, say. Observe that every unpinching maintains a cycle in G which
has weight 6 with respect to the colouring induced by the first colouring of C6
and weight 0 with respect to the second induced colouring. This means G will
contain a cycle C for which W (

−→
C , α) = 6 and W (

−→
C , β) = 0, showing that α

and β cannot possibly be in the same connected component of C3(G).
This completes the proof of the theorem. �	

3 The Complexity of 3-Mixing for Bipartite Graphs

Observing that Theorem 1 gives us two polynomial-time verifiable certificates
for when G is not 3-mixing, we immediately obtain that 3-Mixing is in the
complexity class coNP. By the same theorem, the following decision problem is
the complement of 3-Mixing.

Pinchable-to-C6
Instance : A connected bipartite graph G.
Question : Is G pinchable to C6?

Our proof will in fact show that Pinchable-to-C6 is NP-complete. We will
obtain a reduction from the following decision problem.

Retractable-to-C6
Instance : A connected bipartite graph G with an induced 6-cycle S.
Question : Is G retractable to S? That is, does there exist a homomorphism

r : V (G) → V (S) such that r(v) = v for all v ∈ V (S)?

In [7] it is mentioned, without references, that Tomás Feder and
Gary MacGillivray have independently proved the following result: for complete-
ness, we give a sketch of a proof.

Theorem 4 (Feder, MacGillivray, see [7]). Retractable-to-C6 is NP-
complete.

Sketch of proof of Theorem 4. It is clear that Retractable-to-C6 is in NP.
Given a graph G, construct a new graph G′ as follows : subdivide every edge uv

of G by inserting a vertex yuv between u and v. Also add new vertices a, b, c, d, e
together with edges za, ab, bc, cd, de, ez, where z is a particular vertex of G ( any
one will do ). The graph G′ is clearly connected and bipartite, and the vertices
z, a, b, c, d, e induce a 6-cycle S. We will prove that G is 3-colourable if and only
if G′ retracts to the induced 6-cycle S.

Assume that G is 3-colourable and take a 3-colouring τ of G with τ(z) = 1.
From τ we construct a 6-colouring σ of G′. For this, first set σ(x) = τ(x), if

x ∈ V (G). For the new vertices yuv set σ(yuv) =

⎧

⎨

⎩

4, if τ(u) = 1 and τ(v) = 2,
5, if τ(u) = 2 and τ(v) = 3,
6, if τ(u) = 3 and τ(v) = 1.
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And for the cycle S we take σ(a) = 4, σ(b) = 2, σ(c) = 5, σ(d) = 3 and
σ(e) = 6. Now define r : V (G′) → V (S) by setting r(x) = z, if σ(x) = 1;
r(x) = a, if σ(x) = 4; r(x) = b, if σ(x) = 2; r(x) = c, if σ(x) = 5; r(x) = d, if
σ(x) = 3; and r(x) = e, if σ(x) = 6. It is easy to check that r is a retraction
of G′ to S.

Conversely, suppose G′ retracts to S. We can use this retraction to define
a 6-colouring of G′ in a similar way to that in which we defined r from σ in
the preceeding paragraph. The restriction of this 6-colouring to G yields a 3-
colouring of G, completing the proof. �	

Proof of Theorem 2. We have established that it is sufficient to describe a poly-
nomial reduction from Retractable-to-C6 to Pinchable-to-C6. We shall
describe the reduction but leave the remainder of the proof — which is a simple
matter of checking a number of cases and, though straightforward, is lengthy —
to the reader.

The reduction we use follows that used in [7] to prove the NP-completeness
of the following problem:

Compactable-to-C6
Instance : A connected bipartite graph G.
Question : Is G compactable to C6? That is, does there exist an edge-surjective

homomorphism c : V (G) → V (C6)?

Consider an instance of Retractable-to-C6 : a connected bipartite graph G
and an induced 6-cycle S. From G we construct, in time polynomial in the size
of G, an instance G′ of Pinchable-to-C6 such that

G retracts to S if and only if G′ is pinchable to C6. (∗)

Assume G has vertex bipartition (GA, GB). Let V (S) = SA ∪ SB, where SA =
{h0, h2, h4} and SB = {h1, h3, h5}, and assume E(S) = { h0h1, . . . , h4h5, h5h0 }.

The construction of G′ is as follows.

• For every vertex a ∈ GA\SA, add to G new vertices ua
1, u

a
2 , w

a
1 , ya

1 , ya
2 , together

with edges ua
1h0, aua

2 , w
a
1h3, awa

1 , ua
1w

a
1 , ya

1h5, y
a
2h2, u

a
1y

a
1 , wa

1ya
2 , ua

1u
a
2, y

a
1ya

2 .

• For every vertex b ∈ GB \SB, add to G new vertices ub
1, w

b
1, w

b
2, y

b
1, y

b
2, together

with edges ub
1h0, bu

b
1, w

b
1h3, bw

b
2, u

b
1w

b
1, y

b
1h5, y

b
2h2, u

b
1y

b
1, w

b
1y

b
2, w

b
1w

b
2, y

b
1y

b
2.

• For every edge ab ∈ E(G)\E(S), with a ∈ GA \SA and b ∈ GB \SB, add two
new vertices : xab

a adjacent to a and ua
1 ; and xab

b adjacent to b, wb
1 and xab

a .

It is clear that G′ is connected and bipartite and that G′ contains G as an
induced subgraph. Note also that the subgraphs constructed around a vertex
a ∈ GA \ SA and a vertex b ∈ GB \ SB are isomorphic; these subgraphs are
depicted below in Fig. 1 and Fig. 2.

It is now easy to prove (∗) by considering a number of cases. The details are
omitted.
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Fig. 1. The subgraph of G′ added around a vertex a ∈ GA \ SA, together with the
6-cycle S
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Fig. 2. The subgraph of G′ added around a vertex b ∈ GB \ SB, together with the
6-cycle S

4 A Polynomial-Time Algorithm for Planar Bipartite
Graphs

Now let G denote a bipartite planar graph. To prove Theorem 3 we need some
technical results.

Lemma 4. Let P be a shortest path between distinct vertices u and v in a bi-
partite graph H. Then H is pinchable to P .

Proof. Let P have vertices u = v0, v1, . . . , vk−1, vk = v, and let T be a breadth-
first spanning tree of H rooted at u that contains P (we can choose T so that
it contains P since P is a shortest path ). Now, working in T , pinch all vertices
at distance one from u to v1. Next pinch all vertices at distance two from u to v2.
Continue until all vertices at distance k from u are pinched to vk = v. If necessary,
arbitrary pinches on the vertices at distance at least k +1 from u will yield P . �	
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Lemma 5. Let H be a bipartite graph.
(i) Let u and v be two vertices in H properly pre-coloured with colours from

1, 2, 3. Then this colouring can be extended to a proper 3-colouring of H.
(ii) Let u, v and w be three vertices in H with uv, vw ∈ E(H). Suppose u, v, w

are properly pre-coloured with colours from 1, 2, 3. Then this colouring can
be extended to a proper 3-colouring of H.

(iii)Suppose the vertices of a 4-cycle in H are properly 3-coloured. Then this
3-colouring can be extended to a proper 3-colouring of H.

Proof. (i) is trivial.
(ii) Without loss of generality we can assume that the colouring of u, v, w

is 1-2-1 or 1-2-3. In the first instance, since H is bipartite, we can extend the
colouring of u, v, w to a colouring of H using colours 1 and 2 only. For the second
case, we can use the same 1,2-colouring, except leaving w with colour 3.

(iii) Since any 3-colouring of a C4 has two vertices with the same colour,
without loss of generality we can assume the 4 vertices are coloured 1-2-1-2 or
1-2-1-3. Colourings similar to those used in (ii) above will immediately lead to
the appropriate 3-colourings of H . �	

Proof of Theorem 3. The sequence of claims below outlines an algorithm that,
given G as input, determines in polynomial time whether or not G is 3-mixing.

The first claim is a simple observation.

Claim 1. If G is not connected, then G is 3-mixing if and only if every compo-
nent of G is 3-mixing.

We next show how we can reduce the case to 2-connected graphs.

Claim 2. Suppose G has a cut-vertex v. Let H1 be a component of G−v. Denote
by G1 the subgraph of G induced by V (H1) ∪ {v}, and let G2 be the subgraph
induced by V (G)\V (H1). Then G is 3-mixing if and only if both G1 and G2 are
3-mixing.

Proof. If G is 3-mixing, then clearly so are G1 and G2. Conversely, if G is not
3-mixing, we know by Theorem 1 that there must exist a 3-colouring α of G

and a cycle C in G such that W (
−→
C , α) �= 0. But because C must lie completely

in G1 or G2, we have that G1 or G2 is not 3-mixing. �	

Now we can assume that G is 2-connected. In the next claim we will show that
we can actually assume G to be 3-connected.

Claim 3. Suppose G has a 2-vertex-cut {u, v}. Let H1 be a component of G −
{u, v}. Denote by G1 the subgraph of G induced by V (H1) ∪ {u, v}, and let G2
be the subgraph induced by V (G) \ V (H1). For i = 1, 2, let �i be the distance
between u and v in Gi.

Then only the following cases can occur :

(i) We have �1 = �2 = 1. Then G is 3-mixing if and only if both G1 and G2 are
3-mixing.
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(ii)We have �1 = �2 = 2. ( So for i = 1, 2, there is a vertex wi ∈ V (Gi) so that
uwi, vwi ∈ E(Gi). ) Let G∗

1 be the subgraph of G induced by V (G1) ∪ {w2}
and let G∗

2 be the subgraph induced by V (G2) ∪ {w1}. Then G is 3-mixing if
and only if both G∗

1 and G∗
2 are 3-mixing.

(iii) We have �1 + �2 ≥ 6. Then G is not 3-mixing.

Proof. Because G is bipartite, �1 and �2 must have the same parity. If �1 = 1
or �2 = 1, then there is an edge uv in G, and this same edge must appear in
both G1 and G2. This guarantees that both �1 = �2 = 1, and shows that we
always have one of the three cases.

(i) In this case we have an edge uv in all of G, G1, G2. If one of G1 and G2 is
not 3-mixing, say G1, we must have a 3-colouring α of G1 and a cycle C in G1 for
which W (

−→
C , α) �= 0. By Lemma 5 (i) we can easily extend α to the whole of G,

showing that G is not 3-mixing. On the other hand, if G is not 3-mixing, we know
we must have a 3-colouring β of G and a cycle D in G for which W (

−→
D, β) �= 0.

If D is contained entirely in one of G1 or G2, we are done. If not, D must pass
through u and v. For i = 1, 2, consider the cycle Di formed from the part of D
that is in Gi together with the edge uv. From Lemma 3 it follows that one of D1

and D2 has non-zero weight under β, showing that G1 or G2 is not 3-mixing.
(ii) If one of G∗

1 and G∗
2 is not 3-mixing, we can use a similar argument as in (i)

( now using Lemma 5 (ii) ) to conclude that G is not 3-mixing. For the converse
we assume G is not 3-mixing. So there is a 3-colouring α of G and a cycle C

in G for which W (
−→
C , α) �= 0. If C is contained entirely in one of G∗

1 or G∗
2, we

are done. If not, C must pass through u and v. If C does not contain w1, then
for i = 1, 2, consider the cycle Ci formed by the part of C that is in G∗

i plus
the path uw1v. From Lemma 3 it follows that one of C1, C2 has non-zero weight
under α, showing that G∗

1 or G∗
2 is not 3-mixing. If w1 is contained in C, then

we can use the same argument but now using the edge uw1 or vw1 as the path
( at least one of these edges is not on C since C is not contained entirely in G∗

2 ).
(iii) For i = 1, 2, let Pi be a shortest path between u and v in Gi, so Pi has

length �i. Then, by Lemma 4, we can see that G is pinchable to C�1+�2 (follow,
in G, the sequence of pinches that transforms G1 into P1 and G2 into P2). Since
�1 + �2 ≥ 6, C�1+�2 is of course pinchable to C6, and hence G is not 3-mixing. �	

From now on we consider G to be 3-connected, and can therefore use the following
result of Whitney — for details, see, for example, [3] pp. 78–80.

Theorem 5 (Whitney). Any two planar embeddings of a 3-connected graph
are equivalent.

Henceforth, we identify G with its ( essentially unique ) planar embedding. For a
cycle D in G, denote by Int(D) and Ext(D) the set of vertices inside and outside
of D, respectively. If both Int(D) and Ext(D) are non-empty, D is separating
and we define GInt(D) = G − Ext(D) and GExt(D) = G − Int(D).

We next consider the case that G has a separating 4-cycle.

Claim 4. Suppose G has a separating 4-cycle D. Then G is 3-mixing if and
only if GInt(D) and GExt(D) are both 3-mixing.
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Proof. To prove necessity, we show that if one of GInt(D) or GExt(D) is not 3-
mixing, then G is not 3-mixing. Without loss of generality, suppose that GInt(D)
is not 3-mixing, so there exists a 3-colouring α of GInt(D) and a cycle C in GInt(D)
with W (

−→
C , α) �= 0. The 3-colouring of the vertices of the 4-cycle D can be ex-

tended to a 3-colouring of GExt(D) ( use Lemma 5 (iii) ). The combination of the 3-
colourings of GInt(D) and GExt(D) gives a 3-colouring of G with a non-zero weight
cycle, showing G is not 3-mixing.

To prove sufficiency, we show that if G is not 3-mixing, then at least one
of GInt(D) and GExt(D) must fail to be 3-mixing. Suppose that α is a 3-colouring
of G for which there is a cycle C with W (

−→
C , α) �= 0. If C is contained entirely

within GInt(D) or GExt(D) we are done; so let us assume that C has some
vertices in Int(D) and some in Ext(D). Then applying Lemma 3 ( repeatedly, if
necessary ) we can find a cycle C′ contained entirely in GInt(D) or GExt(D) for
which W (

−→
C′, α) �= 0, completing the proof. �	

We call a face of G with k edges in its boundary a k-face, and a face with at
least k edges in its boundary a ≥ k-face. The number of ≥ 6-faces in G — which
now we can assume is a 3-connected bipartite planar graph with no separating
4-cycle — will lead to our final claim.

Claim 5. Let G be a 3-connected bipartite planar graph with no separating 4-
cycle. Then G is 3-mixing if and only if it has at most one ≥ 6-face.

Proof. We first prove sufficiency. Suppose G has no ≥ 6-faces, so has only 4-faces.
Let α be any 3-colouring of G and let C be any cycle in G. We show W (

−→
C , α) = 0

by induction on the number of faces inside C. If there is just one face inside C,
C is in fact a facial 4-cycle and W (

−→
C , α) = 0. For the inductive step, let C be a

cycle with r ≥ 2 faces in its interior. If, for two consecutive vertices u, v of C, we
have vertices a, b ∈ Int(C) together with edges ua, ab, bv in G, let C′ be the cycle
formed from C by the removal of the edge uv and the addition of edges ua, ab, bv.
If not, check whether for three consecutive vertices u, v, w of C, there is a vertex
a ∈ Int(C) with edges ua, aw in G. If so, let C′ be the cycle formed from C by
the removal of the vertex v and the addition of the edges ua, aw. If neither of the
previous two cases apply, we must have, for u, v, w, x four consecutive vertices
of C, an edge ux inside C. In such a case, let C′ be the cycle formed from C
by the removal of vertices v, w and the addition of the edge ux. In all cases we
have that C′ has r − 1 faces in its interior, so, by induction, we can assume
W (

−→
C′, α) = 0. From Lemma 3 we then obtain W (

−→
C , α) = 0.

Suppose now that G contains exactly one ≥ 6-face. Without loss of generality
we can assume that this face is the outside face, and hence the argument above
will work exactly the same to show that G is 3-mixing.

To prove necessity we show that if G contains at least two ≥ 6-faces, then G
is pinchable to C6. For f a ≥ 6-face in G, a separating cycle D is said to be
f -separating if f lies inside D. Let f and fo be two ≥ 6-faces in G, where we can
assume fo is the outer face of G, and let C be the cycle bounding f . Our claim is
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that we can successively pinch vertices into a cycle of length at least 6 without
ever introducing an f -separating 4-cycle — we will initially do this around C.

Let x, y, z be any three consecutive vertices of C with y having degree at
least 3 — if there is no such vertex y, then G is simply a cycle of length at
least 6 and we are done. Let a be a neighbour of y distinct from x and z, such
that the edges ya and yz form part of the boundary of a face adjacent to f . If
the result of pinching a and z introduces no f -separating 4-cycle, then pinch a
and z and repeat the process. If pinching a and z does result in the creation of
an f -separating 4-cycle, this must be because the path ay, yz forms part of an
f -separating 6-cycle D. We now show how we can find alternative pinches which
do not introduce an f -separating 4-cycle. The fact that D is f -separating means
there is a path P ⊆ D of length 4 between a and z. Note that P cannot contain y,
for this would contradict the fact that G has no separating 4-cycle. Consider the
graph G′ = GInt(D)− {yz}. We claim that the path P ′ = P ∪{ay} is a shortest
path between y and z in G′. To see this, remember that G is bipartite, so any
path between y and z in G has to have odd length. We cannot have another edge
yz ∈ E(G′) since G is simple. Finally, any path between y and z in G′ would,
together with the edge yz, form an f -separating cycle in G. Hence a path of
length 3 between y and z would contradict the fact that G has no separating
4-cycle. By Lemma 4, we see G′ is pinchable to P ′. Using the same sequence of
pinches in G will pinch GInt(D) into D. Note this introduces no separating 4-
cycle into the resulting graph. If necessary, we can repeat the process by pinching
vertices into D, which now bounds a 6-face. This completes the proof. �	

The sequence of Claims 1 – 5 can easily be used to obtain a polynomial-time
algorithm to check if a given planar bipartite graph G is 3-mixing. This completes
the proof of Theorem 3. �	

Acknowledgements. We are indebted to Gary MacGillivray for helpful dis-
cussions and for bringing reference [7] to our attention.
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Birkhäuser Verlag, Basel (2003)

7. Vikas, N.: Computational complexity of compaction to irreflexive cycles. J. Comput.
Syst. Sci. 68, 473–496 (2004)



Minimum-Weight Cycle Covers and

Their Approximability�

Bodo Manthey��

Yale University, Department of Computer Science
P.O. Box 208285, New Haven, CT 06520-8285, USA

manthey@cs.yale.edu

Abstract. A cycle cover of a graph is a set of cycles such that every
vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in
which the length of every cycle is in the set L ⊆ N.

We investigate how well L-cycle covers of minimum weight can be
approximated. For undirected graphs, we devise a polynomial-time ap-
proximation algorithm that achieves a constant approximation ratio for
all sets L. On the other hand, we prove that the problem cannot be
approximated within a factor of 2 − ε for certain sets L.

For directed graphs, we present a polynomial-time approximation al-
gorithm that achieves an approximation ratio of O(n), where n is the
number of vertices. This is asymptotically optimal: We show that the
problem cannot be approximated within a factor of o(n).

To contrast the results for cycle covers of minimum weight, we show
that the problem of computing L-cycle covers of maximum weight can,
at least in principle, be approximated arbitrarily well.

1 Introduction

A cycle cover of a graph is a spanning subgraph that consists solely of cycles such
that every vertex is part of exactly one cycle. Cycle covers are an important tool
for the design of approximation algorithms for different variants of the traveling
salesman problem [2,4,8,9,10,16], for the shortest common superstring problem
from computational biology [7,24], and for vehicle routing problems [13].

In contrast to Hamiltonian cycles, which are special cases of cycle covers,
cycle covers of minimum weight can be computed efficiently. This is exploited
in the above mentioned algorithms, which in general start by computing a cycle
cover and then join cycles to obtain a Hamiltonian cycle. Short cycles limit the
approximation ratios achieved by such algorithms. Roughly speaking, the longer
the cycles in the initial cover, the better the approximation ratio. Thus, we
are interested in computing cycle covers without short cycles. Moreover, there
are algorithms that perform particularly well if the cycle covers computed do
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not contain cycles of odd length [4]. Finally, some vehicle routing problems [13]
require covering vertices with cycles of bounded length. Therefore, we consider
restricted cycle covers, where cycles of certain lengths are ruled out a priori:
For a set L ⊆ N, an L-cycle cover is a cycle cover in which the length of each
cycle is in L. Unfortunately, computing L-cycle covers is hard for almost all sets
L [15,20]. Thus, in order to fathom the possibility of designing approximation
algorithms based on computing cycle covers, our aim is to find out how well
L-cycle covers can be approximated.

Beyond being a basic tool for approximation algorithms, cycle covers are inter-
esting in their own right. Matching theory and graph factorization are important
topics in graph theory. The classical matching problem is the problem of finding
one-factors, i. e., spanning subgraphs in which every vertex is incident to exactly
one edge. Cycle covers of undirected graphs are also called two-factors since
every vertex is incident to exactly two edges in a cycle cover. Both structural
properties of graph factors and the complexity of finding graph factors have been
the topic of a considerable amount of research (cf. Lovász and Plummer [17] and
Schrijver [23]).

1.1 Preliminaries

Let G = (V, E) be a graph. If G is undirected, then a cycle cover of G is a subset
C ⊆ E of the edges of G such that all vertices in V are incident to exactly two
edges in C. If G is a directed graph, then a cycle cover of G is a subset C ⊆ E
such that all vertices are incident to exactly one incoming and one outgoing
edge in C. Thus, the graph (V, C) consists solely of vertex-disjoint cycles. The
length of a cycle is the number of edges it consists of. We are concerned with
simple graphs, i. e., the graphs do not contain multiple edges or loops. Thus, the
shortest cycles of undirected and directed graphs are of length three and two,
respectively. We call a cycle of length λ a λ-cycle for short.

An L-cycle cover of an undirected graph is a cycle cover in which the length
of every cycle is in the set L ⊆ U = {3, 4, 5, . . .}. An L-cycle cover of a directed
graph is analogously defined except that L ⊆ D = {2, 3, 4, . . .}. A special case
of L-cycle covers are k-cycle covers, which are {k, k + 1, . . .}-cycle covers. Let
L = U \ L in the case of undirected graphs, and let L = D \ L in the case of
directed graphs (whether we consider undirected or directed cycle covers will be
clear from the context).

Given edge weights w : E → N, the weight w(C) of a subset C ⊆ E of the
edges of G is w(C) =

∑

e∈C w(e). In particular, this defines the weight of a cycle
cover since we view cycle covers as sets of edges.

Min-L-UCC is the following optimization problem: Given an undirected
complete graph with non-negative edge weights that satisfy the triangle inequal-
ity (w({u, v}) ≤ w({u, x}) + w({x, v}) for all u, x, v ∈ V ) find an L-cycle cover
of minimum weight. Min-k-UCC is defined for k ∈ U like Min-L-UCC except
that k-cycle covers rather than L-cycle covers are sought. The triangle inequal-
ity is not only a natural restriction, it is also necessary: If finding L-cycle covers in



180 B. Manthey

graphs is NP-hard, then Min-L-UCC without the triangle inequality does not
allow for any approximation at all.

Min-L-DCC and Min-k-DCC are defined for directed graphs like Min-L-
UCC and Min-k-UCC for undirected graphs except that L ⊆ D and k ∈ D and
the triangle inequality is of the form w(u, v) ≤ w(u, x) + w(x, v).

Finally, Max-L-UCC, Max-k-UCC, Max-L-DCC, and Max-k-DCC are
analogously defined except that cycle covers of maximum weight are sought and
that the edge weights do not have to fulfill the triangle inequality.

1.2 Previous Results

Min-U-UCC, i. e., the undirected cycle cover problem without any restrictions,
can be solved in polynomial time via Tutte’s reduction to the classical perfect
matching problem [17]. By a modification of an algorithm of Hartvigsen [12], also
4-cycle covers of minimum weight in graphs with edge weights one and two can
be computed efficiently. For Min-k-UCC restricted to graphs with edge weights
one and two, there exists a factor 7/6 approximation algorithm for all k [6].
Hassin and Rubinstein [14] presented a randomized approximation algorithm
for Max-{3}-UCC that achieves an approximation ratio of 83/43 + ε. Max-L-
UCC admits a factor 2 approximation algorithm for arbitrary sets L [18,20].
Goemans and Williamson [11] showed that Min-k-UCC and Min-{k}-UCC can
be approximated within a factor of 4. Min-L-UCC is NP-hard and APX-hard if
L �⊆ {3}, i. e., for all but a finite number of sets L [15,19,20,25].

Min-D-DCC, which is also known as the assignment problem, can be solved
in polynomial time by a reduction to the minimum weight perfect matching
problem in bipartite graphs [1]. The only other L for which Min-L-DCC can be
solved in polynomial time is L = {2}. For all L ⊆ D with L �= {2} and L �= D,
Min-L-DCC and Max-L-DCC are APX-hard and NP-hard [19,20].

There is a 4/3 approximation for Max-3-DCC [5] as well as for Min-k-DCC
for k ≥ 3 with the restriction that the only edge weights allowed are one and
two [3]. Max-L-DCC can be approximated within a factor of 8/3 for all L [20].

If Min-L-UCC or Min-L-DCC is NP-hard, then the triangle inequality is nec-
essary for efficient approximations of this problem; without the triangle inequal-
ity, the problems cannot be approximated at all.

1.3 New Results

While L-cycle covers of maximum weight allow for constant factor approxima-
tions, only little is known so far about the approximability of computing L-cycle
covers of minimum weight. Our aim is to close this gap.

We present an approximation algorithm for Min-L-UCC that works for all sets
L ⊆ U and achieves a constant approximation ratio (Section 2.1). Its running-
time is O(n2 log n). On the other hand, we show that the problem cannot be
approximated within a factor of 2 − ε for general L (Section 2.2).

Our approximation algorithm for Min-L-DCC achieves a ratio of O(n), where
n is the number of vertices (Section 3.1). This is asymptotically optimal: There
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exist sets L for which no algorithm can approximate Min-L-DCC within a fac-
tor of o(n) (Section 3.2). Furthermore, we argue that Min-L-DCC is harder to
approximate than the other three variants even for more “natural” sets L than
the sets used to show the inapproximability (Section 3.3).

Finally, to contrast our results for Min-L-UCC and Min-L-DCC, we show that
Max-L-UCC and Max-L-DCC can be approximated arbitrarily well at least in
principle (Section 4).

2 Approximability of Min-L-UCC

2.1 An Approximation Algorithm for Min-L-UCC

The aim of this section is to devise an approximation algorithm for Min-L-UCC
that works for all sets L ⊆ U . The catch is that for most L it is impossible to
decide whether some cycle length is in L since there are uncountably many sets
L: If, for instance, L is not a recursive set, then deciding whether a cycle cover
is an L-cycle cover is impossible. One option would be to restrict ourselves to
sets L such that the unary language {1λ | λ ∈ L} is in P. For such L, Min-
L-UCC and Min-L-DCC are NP optimization problems. Another possibility for
circumventing the problem would be to include the permitted cycle lengths in
the input. While such restrictions are mandatory if we want to compute optimum
solutions, they are not needed for our approximation algorithms.

A complete n-vertex graph contains an L-cycle cover as a spanning subgraph
if and only if there exist (not necessarily distinct) lengths λ1, . . . , λk ∈ L for
some k ∈ N with

∑k
i=1 λi = n. We call such an n L-admissible and define

〈L〉 = {n | n is L-admissible}. Although L can be arbitrarily complicated, 〈L〉
always allows efficient membership testing: For all L ⊆ N, there exists a finite
set L′ ⊆ L with 〈L′〉 = 〈L〉 [20].

Let gL be the greatest common divisor of all numbers in L. Then 〈L〉 is a
subset of the set of natural numbers divisible by gL. There exists a minimum
pL ∈ N such that ηgL ∈ 〈L〉 for all η > pL. The number pL is the Frobenius
number [22] of {λ | gLλ ∈ L}, which is L scaled down by gL.

In the following, it suffices to know such a finite set L′ ⊆ L. The L-cycle covers
computed by our algorithm will in fact be L′-cycle covers. In order to estimate
the approximation ratio, this cycle cover will be compared to an optimal 〈L′〉-
cycle cover. Since L′ ⊆ L ⊆ 〈L′〉, every L′- or L-cycle cover is also a 〈L′〉-cycle
cover. Thus, the weight of an optimal 〈L′〉-cycle cover provides a lower bound for
the weight of both an optimal L′- and an optimal L-cycle cover. For simplicity,
we do not mention L′ in the following. Instead, we assume that already L is
a finite set, and we compare the weight of the L-cycle cover computed to the
weight of an optimal 〈L〉-cycle cover to bound the approximation ratio.

Goemans and Williamson have presented a technique for approximating con-
strained forest problems [11], which we will exploit. Let G = (V, E) be an undi-
rected graph, and let w : E → N be non-negative edge weights. Let 2V denote
the power set of V . A function f : 2V → {0, 1} is called a proper function if
it satisfies
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– f(S) = f(V \ S) for all S ⊆ V (symmetry),
– if A and B are disjoint, then f(A) = f(B) = 0 implies f(A ∪ B) = 0

(disjointness), and
– f(V ) = 0.

The aim is to find a set F of edges such that there is at least one edge connecting
S to V \S for all S ⊆ V with f(S) = 1. (The name “constrained forest problems”
comes from the fact that it suffices to consider forests as solutions; cycles only
increase the weight of a solution.) Goemans and Williamson have presented
an approximation algorithm [11, Fig. 1] for constrained forest problems that are
characterized by proper functions. We will refer to their algorithm as GoeWill.

Theorem 1 (Goemans and Williamson [11]). Let � be the number of ver-
tices v with f({v}) = 1. Then GoeWill is a (2 − 2

� )-approximation for the
constrained forest problem defined by a proper function f .

In particular, the function fL given by

fL(S) =
{

1 if |S| �≡ 0 (mod gL) and
0 if |S| ≡ 0 (mod gL)

is proper if |V | = n is divisible by gL. (If n is not divisible by gL, then G does
not contain an L-cycle cover at all.) Given this function, a solution is a forest
H = (V, F ) such that the size of every connected component of H is a multiple
of gL. In particular, if gL = 1, then fL(S) = 0 for all S, and an optimum solution
are n isolated vertices.

If the size of all components of the solution obtained are in 〈L〉, we are done:
By duplicating all edges, we obtain Eulerian components. Then we construct
an 〈L〉-cycle cover by traversing the Eulerian components and taking shortcuts
whenever we come to a vertex that we have already visited. Finally, we divide
each λ-cycle into paths of lengths λ1 − 1, . . . , λk − 1 for some k such that λ1 +
. . .+λk = λ and λi ∈ L for all i. By connecting the respective endpoints of each
path, we obtain cycles of lengths λ1, . . . , λk. We perform this for all components
to get an L-cycle cover. A careful analysis shows that the ratio achieved is 4.
The details for the special case of L = {k} are spelled out by Goemans and
Williamson [11].

However, this procedure does not work for general sets L since the sizes of
some components may not be in 〈L〉. This can happen if pL > 0 (for L = {k},
for which the algorithm works, we have pL = 0).

In the following, our aim is to add edges to the forest H = (V, E) output by
GoeWill such that the size of each component is in 〈L〉. This will lead to an
approximation algorithm for Min-L-UCC with a ratio of 4 · (pL + 4), which is
constant for each L. Let F ∗ denote the set of edges of a minimum-weight forest
such that the size of each component is in 〈L〉. The set F ∗ is a solution to G, w,
and fL, but not necessarily an optimum solution.

By Theorem 1, we have w(F ) ≤ 2 · w(F ∗) since w(F ∗) is at least the weight
of an optimum solution to G, w, and fL. Let C = (V ′, F ′) be any connected
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component of F with |V ′| /∈ 〈L〉. The optimum solution F ∗ must contain an
edge that connects V ′ to V \ V ′. The weight of this edge is at least the weight
of the minimum-weight edge connecting V ′ to V \ V ′.

We will add edges until the sizes of all components is in 〈L〉. Our algorithm
acts in phases as follows: Let H = (V, F ) be the graph at the beginning of
the current phase, and let C1, . . . , Ca be its connected components, where Vi is
the vertex set of Ci. We will construct a new graph H̃ = (V, F̃ ) with F̃ ⊇ F .
Let C1, . . . , Cb be the connected components with |Vi| /∈ 〈L〉. We call these
components illegal. For i ∈ {1, . . . , b}, let ei be the cheapest edge connecting Vi

to V \Vi. (Note that ei = ej for i �= j is allowed.) We add all these edges to F to
obtain F̃ = F ∪{e1, . . . , eb}. Since ei is the cheapest edge connecting Vi to V \Vi,
the graph H̃ = (V, F̃ ) is a forest. (If some ei are not uniquely determined, cycles
may occur. We can avoid these cycles by discarding some of the ei to break the
cycles. For the sake of simplicity, we ignore this case in the following analysis.) If
H̃ still contains illegal components, we set H to be H̃ and iterate the procedure.

Now we have w(F̃ ) ≤ w(F )+2 ·w(F ∗), i. e., in the overall weight increases by
at most 2 · w(F ∗) in every phase. Furthermore, after at most pL/2� + 1 phases,
H̃ does not contain any illegal components.

Eventually, we obtain a forest that consists solely of components whose sizes
are in 〈L〉. We call this forest H̃ = (V, F̃ ). Then we proceed as already described
above: We duplicate each edge, thus obtaining Eulerian components. After that,
we take shortcuts to obtain an 〈L〉-cycle cover. Finally, we break edges and
connect the endpoints of each path to obtain an L-cycle cover. The weight of
this L-cycle cover is at most 4 · w(F̃ ).

Overall, we obtain ApxUndir (Algorithm 1) and the following theorem.

Theorem 2. For every L ⊆ U , ApxUndir is a factor (4 · (pL + 4)) approxima-
tion algorithm for Min-L-UCC. Its running-time is O(n2 log n).

Proof. Let C∗ be a minimum-weight 〈L〉-cycle cover. The weight of F̃ is bounded
from above by w(F̃ ) ≤

(⌊

pL

2

⌋

+ 1
)

· 2 · w(F ∗) + 2 · w(F ∗) ≤
(

pL + 4
)

· w(C∗).
Combining this with w(Capx) ≤ 4 · w(F̃ ) yields the approximation ratio.

Executing GoeWill takes time O(n2 log n). All other operations can be im-
plemented to run in time O(n2). ��
We conclude the analysis of this algorithm by mentioning that the approximation
ratio of the algorithm depends indeed linearly on pL.

2.2 Unconditional Inapproximability of Min-L-UCC

In this section, we provide a lower bound for the approximability of Min-L-UCC
as a counterpart to the approximation algorithm of the previous section. We
show that the problem cannot be approximated within a factor of 2 − ε. This
inapproximability result is unconditional, i. e., it does not rely on complexity
theoretic assumptions like P �= NP.

The key to the inapproximability of Min-L-UCC are immune sets [21]: An
infinite set L ⊆ N is called an immune set if L does not contain an infinite recur-
sively enumerable subset. Our result limits the possibility of designing general
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Algorithm 1. ApxUndir

Input. undirected complete graph G = (V, E), |V | = n; edge weights w : E → N

satisfying the triangle inequality
Output. an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n /∈ 〈L〉 then
2: return ⊥
3: run GoeWill using the function fL described in the text to obtain H = (V, F )
4: while the size of some connected components of H is not in 〈L〉 do
5: let C1, . . . , Ca be the connected components of H , where Vi is the vertex set of

Ci; let C1, . . . , Cb be its illegal components
6: let ei be the lightest edge connecting Vi to V \ Vi

7: add e1, . . . , eb to F
8: while H contains cycles do
9: remove one ei to break a cycle

10: duplicate each edge to obtain a multi-graph consisting of Eulerian components
11: for all components of the multi-graph do
12: walk along an Eulerian cycle
13: take shortcuts to obtain a Hamiltonian cycle
14: discard edges to obtain a collection of paths, the number of vertices of each of

which is in L
15: connect the two endpoints of every path in order to obtain cycles
16: the union of all cycles constructed forms Capx; return Capx

approximation algorithms for L-cycle covers. To obtain algorithms with a ratio
better than 2, we have to design algorithms tailored to specific sets L.

Finite variations of immune sets are again immune sets. Thus for every k ∈ N,
there exist immune sets L containing no number smaller than k.

Theorem 3. Let ε > 0 be arbitrarily small. Let k > 2/ε, and let L ⊆ {k, k +
1, . . .} be an immune set. Then Min-L-UCC cannot be approximated within a
factor of 2 − ε.

Theorem 3 is tight since L-cycle covers can be approximated within a factor of 2
by L′-cycle covers for every set L′ ⊆ L with 〈L′〉 = 〈L〉. For finite sets L′, all L′-
cycle cover problems are NP optimization problems. This means that in principle
optimum solutions can be found, although this may take exponential time. The
following Theorem 4 holds in particular for finite sets L′. In order to actually
get an approximation algorithm for Min-L-UCC out of it, we have to solve Min-
L′-UCC finite L′, which is NP-hard and APX-hard. But the proof of Theorem 4
shows also that any approximation algorithm for Min-L′-UCC for finite sets L′

that achieves an approximation ratio of r can be turned into an approximation
algorithm for the general problem with a ratio of 2r. Let minL(G, w) denote the
weight of a minimum-weight L-cycle cover of G with edge weights w.

Theorem 4. Let L ⊆ U be a non-empty set, and let L′ ⊆ L with 〈L′〉 =
〈L〉. Then minL′(G, w) ≤ 2 · minL(G, w) for all undirected graphs G with edge
weights w satisfying the triangle inequality.
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Algorithm 2. ApxDir

Input. directed complete graph G = (V, E), |V | = n; edge weights w : E → N

satisfying the triangle inequality
Output. an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n /∈ 〈L〉 then
2: return ⊥
3: construct an undirected complete graph GU = (V, EU ) with edge weights

wU ({u, v}) = w(u, v) + w(v, u)
4: run ApxUndir on GU and wU to obtain Capx

U

5: for all cycles cU of Capx
U do

6: cU corresponds to a cycle of G that can be oriented in two ways; put the
orientation c that yields less weight into Capx

7: return Capx

3 Approximability of Min-L-DCC

3.1 An Approximation Algorithm for Min-L-DCC

In this section, we present an approximation algorithm for Min-L-DCC. The
algorithm exploits ApxUndir to achieve an approximation ratio of O(n). The
hidden factor depends on pL again. This result matches asymptotically the lower
bound of Section 3.2 and shows that Min-L-DCC can be approximated at least to
some extent. (For instance, without the triangle inequality, no polynomial-time
algorithm achieves a ratio of O(exp(n)) for an NP-hard L-cycle cover problem
unless P = NP.)

In order to approximate Min-L-DCC, we reduce the problem to a variant of
Min-L-UCC, where also 2-cycles are allowed: We obtain a 2-cycle of an undi-
rected graph by taking an edge {u, v} twice. Let G = (V, E) be a directed
complete graph with n vertices and edge weights w : E → N that fulfill the
triangle inequality. The corresponding undirected complete graph GU = (V, EU )
has weights wU : EU → N with wU ({u, v}) = w(u, v) + w(v, u).

Let C be any cycle cover of G. The corresponding cycle cover CU of GU is
given by CU = {{u, v} | (u, v) ∈ C}. Note that we consider CU as a multiset: If
both (u, v) and (v, u) are in C, i. e., u and v form a 2-cycle, then {u, v} occurs
twice in CU . We can bound the weight of CU in terms of the weight of C: For
every cycle cover C of G, we have wU (CU ) ≤ n · w(C).

Our algorithm computes an L′-cycle cover for some finite L′ ⊆ L with 〈L′〉 =
〈L〉. As in Section 2.1, the weight of the cycle cover computed is compared to an
optimum 〈L〉-cycle cover rather than an optimum L-cycle cover. Thus, we can
again assume that already L is a finite set.

The algorithm ApxUndir, which was designed for undirected graphs, remains
to be an O(1) approximation if we allow 2 ∈ L. The numbers pL and gL are
defined in the same way as in Section 2.1.

Let Capx
U be the L-cycle cover output by ApxUndir on GU . We transfer Capx

U

into an L-cycle cover Capx of G. For every cycle cU of Capx
U , we can orient the

corresponding directed cycle c in two directions. We take the orientation that
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yields less weight, thus w(Capx) ≤ wU (Capx
U )/2. Overall, we obtain ApxDir

(Algorithm 2), which achieves an approximation ratio of O(n) for every L.

Theorem 5. For every L ⊆ D, ApxDir is a factor (2n·(pL+4)) approximation
algorithm for Min-L-DCC. Its running-time is O(n2 log n).

Proof. Theorem 2 yields wU (Capx
U ) ≤ 4 · (pL + 4) · wU (C∗

U ), where C∗
U is an

optimal 〈L〉-cycle cover of GU . Now consider an optimum 〈L〉-cycle cover C∗

of G. Overall, we obtain w(Capx) ≤ 1
2 · wU (Capx

U ) ≤ 2 · (pL + 4) · wU (C∗
U ) ≤

2n · (pL + 4) · w(C∗).
The running-time is dominated by the time needed to execute GoeWill in

ApxUndir, which is O(n2 log n). ��

3.2 Unconditional Inapproximability of Min-L-DCC

For undirected graphs, both Max-L-UCC and Min-L-UCC can be approximated
efficiently to within constant factors. Surprisingly, in case of directed graphs, this
holds only for the maximization variant of the directed L-cycle cover problem.
Min-L-DCC cannot be approximated within a factor of o(n) for certain sets L,
where n is the number of vertices of the input graph. In particular, ApxDir

achieves asymptotically optimal approximation ratios for Min-L-DCC.
Similar to the case of Min-L-UCC, this result shows that to find approxima-

tion algorithms, specific properties of the sets L have to be exploited. Moreover,
as we will discuss in Section 3.3, Min-L-DCC seems to be much harder a problem
than the other three variants, even for more practical sets L.

Theorem 6. Let L ⊆ U be an immune set. Then no approximation algorithm
for Min-L-DCC achieves an approximation ratio of o(n), where n is the number
of vertices of the input graph.

Min-L′-DCC for a finite set L′ is an NP optimization problem. Thus, it can be
solved, although this may take exponential time. Therefore, the following result
shows that Min-L-DCC can be approximated for all L within a ratio of n/s for
arbitrarily large constants s, although this may also take exponential time. In
this sense, Theorem 6 is tight.

Theorem 7. For every L and every s > 1, there exists a finite set L′ ⊆ L with
〈L′〉 = 〈L〉 such that minL′(G, w) ≤ n

s ·minL(G, w) for all directed graphs G with
edge weights w satisfying the triangle inequality.

3.3 Remarks on the Approximability of Min-L-DCC

It might seem surprising that Min-L-DCC is much harder to approximate than
Min-L-UCC or the maximization problems Max-L-UCC and Max-L-DCC. In the
following, we give some reasons why Min-L-DCC is more difficult than the other
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three L-cycle cover problems. In particular, even for “easy” sets L, for which
membership testing can be done in polynomial time, it seems that Min-L-DCC
is much harder to approximate than the other three variants.

Why is minimization harder than maximization? To get a good approximation
ratio in the case of maximization problems, it suffices to detect a few “good”,
i. e., heavy edges. If we have a decent fraction of the heaviest edges, their total
weight is already within a constant factor of the weight of an optimal L-cycle
cover. In order to form an L-cycle cover, we have to connect the heavy edges
using other edges. These other edges might be of little weight, but they do not
decrease the weight that we have already obtained from the heavy edges. For
approximating cycle covers of minimum weight, it does not suffice to detect a
couple of “good”, i. e., light edges: Once we have selected a couple of good edges,
we might have to connect them with heavy-weight edges. These heavy-weight
edges can worsen the approximation ratio dramatically.

Why is Min-L-DCC harder than Min-L-UCC? If we have a cycle in an undi-
rected graph whose length is in 〈L〉 but not in L (or not in L′ but we do not
know if it is in L), then we can decompose it into smaller cycles all lengths of
which are in L. This can be done such that the weight at most doubles. However,
by decomposing a long cycle of a directed graph into smaller ones, the weight
can increase tremendously.

Finally, a question that arises naturally is if we can do better if all allowed
cycle lengths are known a priori. This can be achieved by restricting ourselves
to sets L that allow efficient membership testing. Another option is to include
the allowed cycle lengths in the input, i. e., in addition to an n-vertex graph
and edge weights, we are given a subset of {2, 3, . . . , n} of allowed cycle lengths.
A constant factor approximation for either variant would, however, yield an
approximation algorithm for the asymmetric traveling salesman problem (ATSP)
with dramatically improved approximation ratio.

4 Properties of Maximum-Weight Cycle Covers

To contrast our results for Min-L-UCC and Min-L-DCC, we show that their
maximization counterparts Max-L-UCC and Max-L-DCC can, at least in prin-
ciple, be approximated arbitrarily well; their inapproximability is solely due to
their APX-hardness and not to the difficulties arising from undecidable sets L.

Let maxL(G, w) be the weight of a maximum-weight L-cycle cover of G with
edge weights w. The edge weights w do not have to fulfill the triangle inequal-
ity. We will show that maxL(G, w) can be approximated arbitrarily well by
maxL′(G, w) for finite sets L′ ⊆ L with 〈L′〉 = 〈L〉. Thus, any approximation
algorithm for Max-L′-UCC or Max-L′-DCC for finite sets L′ immediately yields
an approximation algorithm for general sets L with an only negligibly worse
approximation ratio.

The following theorem for directed cycle covers contains the case of undirected
graphs as a special case.
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Theorem 8. Let L ⊆ D be any non-empty set, and let ε > 0. Then there exists a
finite subset L′ ⊆ L with 〈L′〉 = 〈L〉 such that maxL′(G, w) ≥ (1−ε)·maxL(G, w)
for all graphs G with edge weights w.

5 Concluding Remarks

First of all, we would like to know if there is a general upper bound for the
approximability of Min-L-UCC: Does there exist an r (independent of L) such
that Min-L-UCC can be approximated within a factor of r? We conjecture that
such an algorithm exists. If such an algorithm works also for the slightly more
general problem Min-L-UCC with 2 ∈ L (see Section 3.1), then we would obtain
a factor rn/2 approximation for Min-L-DCC as well.

While the problem of computing L-cycle cover of minimum weight can be
approximated efficiently in the case of undirected graphs, the directed variant
seems to be much harder. We are interested in developing approximation algo-
rithms for Min-L-DCC for particular sets L or for certain classes of sets L. For
instance, how well can Min-L-DCC be approximated if L is a finite set? Are there
non-constant lower bounds for the approximability of Min-L-DCC, for instance
bounds depending on max(L)?
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Abstract. We deal with the asymptotic enumeration of combinatorial
structures on planar maps. Prominent instances of such problems are
the enumeration of spanning trees, bipartite perfect matchings, and ice
models. The notion of an α-orientation unifies many different combina-
torial structures, including the afore mentioned. We ask for the number
of α-orientations and also for special instances thereof, such as Schnyder
woods and bipolar orientations. The main focus of this paper are bounds
for the maximum number of such structures that a planar map with n
vertices can have. We give examples of triangulations with 2.37n Schny-
der woods, 3-connected planar maps with 3.209n Schnyder woods and
inner triangulations with 2.91n bipolar orientations. These lower bounds
are accompanied by upper bounds of 3.56n, 8n, and 3.97n, respectively.
We also show that for any planar map M and any α the number of α-
orientations is bounded from above by 3.73n and we present a family of
maps which have at least 2.598n α-orientations for n big enough.

1 Introduction

A planar map is a planar graph together with a plane drawing. Many different
structures on planar maps have attracted the attention of researchers. Among
them are spanning trees, bipartite perfect matchings (or more generally bipar-
tite f -factors), Eulerian orientations, Schnyder woods, bipolar orientations and
2-orientations of quadrangulations. The concept of α-orientations is a quite gen-
eral one. Remarkably, all the above structures can be encoded by certain α-
orientations. Let a planar map M with vertex set V and a function α : V → N

be given. An orientation X of the edges of M is an α-orientation if every vertex
v has out-degree α(v).

For some of the structures mentioned above it is not obvious how to encode
them as α-orientations. For Schnyder woods on triangulations the encoding by
3-orientations goes back to de Fraysseix and de Mendez [6]. For bipolar orien-
tations an encoding was proposed by Woods and independently by Tamassia
and Tollis [22]. Bipolar orientations of M are one of the structures which cannot
be encoded as α-orientations on M , an auxiliary map M ′ (the angle graph of
M) has to be used instead. For Schnyder woods on 3-connected planar maps as
well as bipartite f -factors and spanning trees Felsner [10] describes encodings
as α-orientations. He also proves that the set of α-orientations of a planar map

A. Brandstädt, D. Kratsch, and H. Müller (Eds.): WG 2007, LNCS 4769, pp. 190–201, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



On the Number of α-Orientations 191

M is a distributive lattice. This structure on the set of α-orientations found
applications in drawing algorithms for example in [3], and for enumeration and
random sampling of graphs in [12].

Given the existence of a combinatorial structure on a class Mn of planar
maps with n vertices, one of the questions of interest is how many such struc-
tures there are for a given map M ∈ Mn. Especially, one is interested in the
minimum and maximum that this number attains on the maps from Mn. This
question has been treated quite successfully for spanning trees and bipartite per-
fect matchings. For spanning trees the Kirchhoff Matrix Tree Theorem comes
into the game and allows to bound the maximum number of spanning trees of
a planar graph with n vertices between 5.02n and 5.34n, see [19]. Pfaffian ori-
entations can be used to efficiently calculate the number of bipartite perfect
matchings in the planar case, see for example [16]. Kasteleyn has shown, that
the k × � square grid has about e0.29·k� ≈ 1.34k� perfect matchings. The number
of Eulerian orientations is studied in statistical physics under the name of ice
models. In particular Lieb [15] has shown that the square grid on the torus has
(8

√
3/9)k� ≈ 1.53k� Eulerian orientations and Baxter [1] has worked out the

asymptotics for the triangular grid on the torus as (3
√

3/2)k� ≈ 2.598k�.
In many cases it is relatively easy to see which maps in a class Mn carry a

unique object of a certain type, while the question about the maximum number
is rather intricate. Therefore, we focus on finding the asymptotics or lower and
upper bounds for the maximum number of α-orientations that a map from Mn

can carry. The next table gives an overview of the results of this paper for
different instances of Mn and α. The entry c in the “Upper Bound” column is
to be read as O(cn), in the “Lower Bound” column as Ω(cn) and for the “≈ c”
entries the asymptotics are known.

The paper is organized as follows. In Section 2 we treat the most general case,
where Mn is the class of all planar maps with n vertices and α can be any integer
valued function. Apart from giving lower and upper bounds we briefly discuss
the complexity of counting α-orientations and a reduction to counting perfect

Graph class and orientation type Lower bound Upper bound

α-orientations on planar maps 2.59 3.73

Eulerian orientations on planar maps 2.59 3.73

Schnyder woods on triangulations 2.37 3.56

Schnyder woods on the square grid ≈ 3.209

Schnyder woods on 3-connected planar maps 3.209 8

2-orientations on quadrangulations 1.53 1.91

bipolar orientations on stacked triangulations ≈ 2

bipolar orientations on outerplanar maps ≈ 1.618

bipolar orientations on the square grid 2.18 2.62

bipolar orientations on planar maps 2.91 3.97
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matchings of bipartite graphs. In Section 3 we consider Schnyder woods on plane
triangulations and the more general case of Schnyder woods on 3-connected pla-
nar maps. We split the treatment of Schnyder woods because the more direct
encoding of Schnyder woods on triangulations as α-orientations yields stronger
bounds. We also discuss the asymptotic number of Schnyder woods on the square
grid. In Section 4, we study bipolar orientations on the square grid and outerpla-
nar maps as well as general planar maps. The upper bound for planar maps relies
on a new encoding of bipolar orientations of inner triangulations. We conclude
with some open problems.

In Sections 2 and 3 we include some proofs since many of the other proofs use
these results or similar techniques. Proofs omitted due to space constraints are
available in a full version of this paper on the authors’ homepage.

2 Counting α-Orientations

A planar map M is a simple planar graph G together with a fixed crossing-free
embedding of G in the Euclidean plane. In particular M has a designated outer
(unbounded) face. We denote the sets of vertices, edges and faces of a given
planar map by V , E, and F , and their respective cardinalities by n, m and f .
The degree of a vertex v will be denoted by d(v).

Let M be a planar map and α : V → N. An edge orientation X of M is an
α-orientation if every v ∈ V has exactly α(v) edges directed away from it in X .

Let X be an α-orientation of G and let C be a directed cycle in X . Define
XC as the orientation obtained from X by reversing all edges of C. Since the
reversal of a directed cycle does not affect out-degrees the orientation XC is also
an α-orientation of M . The plane embedding of M allows us to classify a directed
simple cycle as clockwise if the interior is to the right of C or as counterclockwise
otherwise. If C is a ccw-cycle of X then we say that XC is left of X . The set of
α-orientations of M endowed with the transitive closure of the ’left of’ relation
is a distributive lattice [10].

The following observation is easy but very useful. Let M and α : V → N be
given, W ⊂ V and EW the edges of M with one endpoint in W and one in V \W .
Suppose all edges of EW are directed away from W in some α-orientation X0 of
M . Then, the demand of W for

∑

w∈W α(w) outgoing edges forces all edges in
EW to be directed away from W in every α-orientation of M . Edges with the
same direction in every α-orientation are called rigid.

We denote the number of α-orientations of M by rα(M). Most of this paper
is concerned with lower and upper bounds for maxM∈M rαM (M) for some class
M of planar maps. A planar map has at most 2m α-orientations as every edge
can be directed in at most two ways.

Lemma 1. Let M be a planar map and A ⊂ E be a cycle free subset of edges
of M . Then, there are at most 2m−|A| α-orientations of M . This holds for every
function α : V → N. Furthermore, M has less than 4n α-orientations.

Proof. Let X be an arbitrary but fixed orientation out of the 2m−|A| orienta-
tions of the edges of E \ A. It suffices to show that X can be extended to an
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α-orientation of M in at most one way. We proceed by induction over |A|. The
base case |A| = 0 is trivial. If |A| > 0, then, as A is cycle free, there is a ver-
tex v which is incident to exactly one edge e of A. If v has out-degree α(v)
respectively α(v) − 1 in X , then e must be directed towards respectively away
from v. In either case the direction of e is determined by X , and by induction
there is at most one way to extend the resulting orientation of E \ (A − e) to
an α-orientation of M . If v does not have α(v) or α(v) − 1 outgoing edges, then
there is no extension of X to an α-orientation of M . The bound 2m−n+1 < 4n

follows by choosing A to be a spanning forest and applying Euler’s formula. ��
To improve on this bound we state Lemma 2, but the proof is omitted here.

Lemma 2. Let M be a planar map with n vertices that has an independent set
of n2 vertices, which have degree 2 in M . Then, M has at most (3n−6)−(n2−1)
edges.

Proposition 1. Let M be a planar map, α : V → N, and I = I1 ∪ I2 an
independent set of M , where I2 is the set of vertices in I, which have degree 2
in M . Then, M has at most

22n−4−|I2| ·
∏

v∈I1

(

1
2d(v)−1

(

d(v)
α(v)

))

(1)

α-orientations.

Proof. We may assume that M is connected. Let Mi, for i = 1, . . . c, be the
components of M −I. We claim that M has at most (3n−6)− (c−1)− (|I2|−1)
edges. Note, that every component C of M − I must be connected to some other
component C′ via a vertex v ∈ I such that the edges vw and vw′ with w ∈ C and
w′ ∈ C′ form an angle at v. As w and w′ are in different connected components
the edge ww′ is not in M and we can add it without destroying planarity. We
can add at least c − 1 edges not incident to I in this fashion. Thus, by Lemma 2
we have that m + (c − 1) ≤ 3n − 6 − (I2 − 1).

Let S′ be a spanning forest of M −I, and let S be obtained from S′ by adding
one edge incident to every v ∈ I, S has n− c edges. By Lemma 1 M has at most
2m−|S| α-orientations and we note that m − |S| ≤ (3n − 6) − (c − 1) − (|I2| −
1) − (n − c) = 2n − 4 − |I2|.

For every vertex v ∈ I1 there are 2d(v)−1 possible orientations of the edges of
M −S at v. Only the orientations with α(v) or α(v)− 1 outgoing edges at v can
potentially be completed to an α-orientation of M . Since I1 is an independent
set it follows that M has at most

2m−|S| ·
∏

v∈I1

(d(v)−1
α(v)

)

+
(d(v)−1
α(v)−1

)

2d(v)−1 ≤ 22n−4−|I2| ·
∏

v∈I1

(d(v)
α(v)

)

2d(v)−1 (2)

α-orientations. ��

Proposition 2. For every α and M we have that rα(M) ≤ 3.73n. There are
infinitely many graphs with more than 2.59n Eulerian orientations.
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Proof. By the Four Color Theorem every planar map allows for an independent
set I of size n/4. Edges incident to degree 1 vertices are always rigid, so we
assume d(v) ≥ 3 for v ∈ I1. We use Proposition 1 and upper bound the right
hand side of (2) to conclude that rα(M) ≤ 22n−4−|I2| ·

( 3
4

)|I1| ≤ 3.73n. The
lower bound uses a planarization of the triangular grid on the torus, which was
mentioned in the introduction and is shown on the right in Figure 2. ��
Given a planar map M and some α : V → N, what is the complexity of com-
puting the number of α-orientations of M? In some instances this number can
be computed efficiently, e.g. for perfect matchings and spanning trees of general
planar maps, as mentioned in the introduction.

Recently, Creed [4] has shown that counting Eulerian orientations is #P -
complete even for planar maps. In the full paper we use Creed’s method and a
reduction from perfect matchings of k-regular bipartite graphs, see [5], to show
the following. Counting α-orientations is #P -complete for 4-regular planar maps
with α : V → {1, 2, 3} as well as for planar maps with vertex degrees in {3, 4, 5}
and α(v) = 2 for all v ∈ V .

In general, computing the number of α-orientations can be reduced to count-
ing f -factors in bipartite planar graphs and thus to counting perfect matchings in
bipartite graphs [23]. This reduction is useful because bipartite perfect match-
ings have been the subject of extensive research (for example [16,13,18]). We
mention two useful facts that follow from this relation. First, it can be tested in
polynomial time if the α-orientations of a given map can be counted using Pfaf-
fian orientations. If this is not the case, there is a fully polynomial randomized
approximation scheme for approximating this number.

3 Counting Schnyder Woods

Schnyder woods for triangulations have been introduced as a tool for graph
drawing and graph dimension theory in [20,21] and for 3-connected planar maps
in [8]. Here we review the definitions and encodings as α-orientations, for a
comprehensive introduction, see e.g. [9].

Let M be a planar map and a1, a2, a3 be three vertices occurring in clockwise
order on the outer face of M . A suspension Mσ of M is obtained by attaching
a half-edge that reaches into the outer face to each of these special vertices. A
Schnyder wood rooted at a1, a2, a3 is an orientation and coloring of the edges
of Mσ with the colors 1, 2, 3 satisfying the following rules, see the left part of
Figure ??. Every edge e is oriented in one direction or in two opposite directions.
The directions of edges are colored such that if e is bidirected the two directions
have distinct colors. The half-edge at ai is directed outwards and colored i. Every
vertex v has out-degree one in each color. The edges e1, e2, e3 leaving v in colors
1, 2, 3 occur in clockwise order. Each edge entering v in color i enters v in the
clockwise sector from ei+1 to ei−1. There is no interior face the boundary of
which is a monochromatic directed cycle. Note that for triangulations only the
three outer edges are bidirected. The next theorem is from [6].
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Fig. 1. Schnyder wood on a map Mσ, the suspension dual Mσ
∗
, the completion �M

Theorem 1. Let T be a plane triangulation, let αT (v) := 3 if v is an internal
vertex and αT (v) := 0 if v lies on the outer face. Then, there is a bijection
between the Schnyder woods of T and the αT -orientations of the interior edges
of T .

In the sequel we refer to an αT -orientation simply as a 3-orientation. We now ex-
plain how Schnyder woods of non-triangular maps are encoded as α-orientations.

Let Mσ be a 3-connected planar map plus three rays emanating from three
outer vertices a1, a2, a3 into the unbounded face. The suspension dual Mσ∗ of
Mσ is obtained from the dual M∗ of M as follows, see also Figure ??. Replace
the vertex v∗∞, which represents the unbounded face of M in M∗, by a triangle
on three new vertices b1, b2, b3. Let Pi be the path from ai−1 to ai+1 on the outer
face of M which avoids ai. In Mσ∗ the edges dual to those on Pi are incident
to bi instead of v∗∞. Adding a ray to each of the bi yields Mσ∗. The completion
˜M of Mσ and Mσ∗ is obtained by superimposing the two graphs such that
exactly the primal dual pairs of edges cross. In the completion ˜M the common
subdivision of each crossing pair of edges is replaced by a new edge-vertex. Note
that the rays emanating from the three special vertices of Mσ cross the three
edges of the triangle induced by b1, b2, b3 and thus produce edge vertices. The six
rays emanating into the unbounded face of the completion end at a new vertex
v∞ placed in this unbounded face. Let a function αM be defined on Mσ∗ by
αM (v) = 3 for every primal or dual vertex v, αM (ve) = 1 for every edge vertex
ve, and αM (v∞) = 0 for the special closure vertex v∞. For a proof of the next
theorem see [10].

Theorem 2. The Schnyder woods of a suspended planar map Mσ are in bijec-
tion with the αM -orientations of ˜M .

The full paper contains a constructive characterization of all maps with a unique
Schnyder wood, thus generalizing the known characterization for triangulations.

Bonichon [2] found a bijection between Schnyder woods on triangulations
with n vertices and pairs of non-crossing Dyck-paths, which implies that there
are Cn+2Cn − C2

n+1 Schnyder woods on triangulations with n vertices, where
Cn denotes the nth Catalan number. Thus, there are asymptotically about 16n

Schnyder woods on triangulations with n vertices. Tutte’s classic result says, that
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there are asymptotically about 9.48n plane triangulations on n vertices. See [17]
for a proof of Tutte’s formula using Schnyder woods. The two results together
imply, that on average there are about 1.68n Schnyder woods on a triangulation
with n vertices. The next theorem is concerned with the maximum number of
Schnyder woods on a fixed triangulation.

Theorem 3. Let Tn denote the set of all plane triangulations with n vertices
and S(T ) the set of Schnyder woods of T ∈ Tn. Then, 2.37n ≤ maxT∈Tn |S(T )| ≤
3.56n.

Proof. The upper bound follows from Proposition 1 by using that
(

d(v)
3

)

·21−d(v) ≤
5
8 for d(v) ≥ 3. For the proof of the lower bound we introduce the triangular
grid, which is derived from the square grid Gk,�. The graph Gk,� has vertex set
{(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ �} and all edges of the form {(i, j), (i, j + 1)} and
{(i, j), (i+1, j)}. The triangular grid Tk,� is obtained by adding the edges of the
form {(i, j), (i − 1, j + 1)}. The grid triangulation T ∗

k,� is derived from Tk,� by
augmenting it with a triangle as shown in Figure 2.

(4, 1)
(4, 1)
(3, 1)

(1, 1)
(1, 1)
(2, 1)
(2, 1)
(3, 1)

(4, 2) (4, 3) (4, 4)(4, 1)

(4, 2) (4, 3) (4, 4)(4, 1)

(1, 1)

(2, 1)

(3, 1)

Fig. 2. The graphs T ∗
4,5 with a canonical Schnyder wood and T4,4 with the additional

edges simulating Baxter’s boundary conditions

Intuitively, T ∗
k,� promises to be a good candidate for a lower bound because

the canonical orientation shown in Figure 2 on the left has many directed cycles.
We formalize this now by showing that Tk,k has at least 25/4(k−1)2 Schnyder
woods, which yields the claimed bound for k big enough. Instead of working
with the 3-orientations of T ∗

k,� we use α∗-orientations of Tk,� where α∗(i, j) = 3
if 2 ≤ i ≤ k − 1 and 2 ≤ i ≤ � − 1 α∗(i, j) = 1 if (i, j) ∈ {(1, 1), (1, �), (k, �)}
and α∗(i, j) = 2 otherwise. For simplicity, we refer to α∗-orientations of Tk,� as
3-orientations.

The boundaries of the triangles of Tk,k can be partitioned into two classes C
and C′ of directed cycles of cardinality (k − 1)2 each. No two cycles from the
same class share an edge and C ∈ C′ shares an edge with three cycles from C if
it does not include a boundary edge.

For any subset D of C reversing all the cycles in D yields a 3-orientation of
Tk,k, and we can encode this orientation as a 0-1-sequence of length (k − 1)2.
After performing the flips of a given 0-1-sequence a a cycle C′ ∈ C′ is directed
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if and only if either all or none of the three cycles sharing an edge with C′

have been reversed. Thus the number of different cycle flip sequences on C ∪
C′ is bounded from below by

∑

a∈{0,1}(k−1)2 2
�

C′∈C′ XC′ (a). Here XC′(a) is an
indicator function, which takes value 1 if C′ is directed after performing the flips
of a and 0 otherwise.

We now assume that every a ∈ {0, 1}(k−1)2 is chosen uniformly at random.
The expected value of the above function is then

E[2
�

XC′ ] =
1

2(k−1)2

∑

a∈{0,1}(k−1)2

2
�

C′∈C′ XC′ (a).

Jensen’s inequality E[ϕ(X)] ≥ ϕ(E[X ]) holds for a random variable X and
a convex function ϕ. We derive that E[2

�
XC′ ] ≥ 2E[

�
XC′ ] = 2

�
P[C′ flippable].

The probability that C′ is flippable is at least 1/4. For C′ which does not include
a boundary edge the probability depends only on the three cycles from C that
share an edge with C′ and two out of the eight flip vectors for these three cycles
make C′ flippable. A similar reasoning applies for C′ including a boundary edge.
Altogether this yields that

∑

a∈{0,1}(k−1)2 2
�

C′∈C′ XC′ (a) ≥ 2(k−1)2 · 21/4·(k−1)2 .
Different cycle flip sequences yield different Schnyder woods. The orientation of
an edge is determined by whether the two cycles on which it lies are both flipped
or not. We can tell a flip sequence apart from its complement by looking at the
boundary edges. ��

Remark. We relate Baxter’s result [1] for Eulerian orientations of the triangular
grid on the torus to Schnyder woods on T ∗

k,�. Every 3-orientation of Tk,� plus the
wrap-around edges oriented as shown in Figure 2 on the right yields a Eulerian
orientation on the torus. We deduce that T ∗

k,� has at most 2.599n Schnyder woods.
There are only 22(k+�)−1 different orientations of these wrap-around edges. By
the pigeon hole principle there is an orientation αk,� of these edges which can
be extended to a Eulerian orientation in asymptotically 2.598k� ways. Thus,
there is an αk,� for T ∗

k,�, which deviates from a 3-orientation only on the special
vertices and the border of the grid such that there are asymptotically 2.598n αk,�-
orientations. Note, however, that directing all the wrap-around edges away from
the vertex to which they are attached in Figure 2 induces a unique Eulerian
orientation of T ∗

k,�. We have not been able to show that Tk,� has 2.598k� 3-
orientations, i.e. to verify that Baxter’s result also gives a lower bound for the
number of 3-orientations.

Now we discuss bounds on the number of Schnyder woods on 3-connected planar
maps. The lower bound comes from the grid. The upper bound for this case is
much larger than the one for triangulations. This is due to the encoding of
Schnyder woods by 3-orientations on the primal dual completion graph, which
has more vertices.

Theorem 4. Let Mn be the set of 3-connected planar maps with n vertices and
S(M) denote the set of Schnyder woods of M ∈ Mn. Then, 3.209n ≤ |S(M)| ≤
8n.
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Fig. 3. A Schnyder wood on the map G∗
4,4, the reduced primal dual completion G7,7 −

(7, 1) with the corresponding orientation and the associated spanning tree

The example used for the lower bound is the square grid graph Gk,�. Enumeration
and counting of different combinatorial structures on the grid graph has received
a lot of attention in the literature, see e.g. [15].

As Schnyder woods are defined on 3-connected graphs we augment Gk,� by
an outer triangle {a1, a2, a3} and edges from the boundary vertices of the grid
to the vertices of this triangle. Figure 2 shows an augmented triangular grid;
removing the diagonals in the squares yields G∗

4,5.

Theorem 5. For k, � big enough the number of Schnyder woods of the aug-
mented grid G∗

k,�, is |S(G∗
k,�)| ≈ 3.209k�.

The proof uses a bijection between Schnyder woods on G∗
k,� and perfect match-

ings of G2k−1,2�−1 minus on corner. This bijection also shows that Schnyder
woods of G∗

k,� are in bijection with spanning trees of Gk,� by a result of Tem-
perley, see [14] for more on the topic.

The proof of the upper bound stated in Theorem 4 uses the upper bound for
Schnyder woods on plane triangulations. A triangulation TM is derived from a
planar map M by taking barycentric subdivisions of all non-triangular bounded
faces. The number of Schnyder woods of TM is shown to be an upper bound for
the number of Schnyder woods of M and a specialization of the techniques from
Proposition 1 yields the claimed bound.

Felsner et al. [11] present a theory of 2-orientations of plane quadrangulations,
which shows many similarities with the theory of Schnyder woods for triangu-
lations. We have studied the number of 2-orientations of quadrangulations and
obtained the following results.

Theorem 6. Let Qn denote the set of all plane quadrangulations with n vertices
and Z(Q) the set of 2-orientations of Q ∈ Qn. Then, for n big enough 1.53n ≤
maxQ∈Qn |Z(Q)| ≤ 1.91n.

4 Counting Bipolar Orientations

A good starting point for reading about bipolar orientations is [7]. Let G be a
connected graph and e = st a distinguished edge of G. An orientation X of the
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edges of G is an e-bipolar orientation of G if it is acyclic, s is the only vertex
without incoming edges and t is the only vertex without outgoing edges. We call
s and t the source respectively sink of X . There are many equivalent definitions
of bipolar orientations, c.f. [7]. For our considerations any choice of two vertices
s, t on the outer face will do, they need not be adjacent. We will simply refer to
bipolar orientations instead of e-bipolar orientations. At this point we restrict
ourselves to giving the encoding of bipolar orientations as α-orientations, which
is introduced in [7].

Theorem 7. Let M be a planar map and ̂M its angle graph. Let α̂ : V ∪F → N

be such that α̂(F ) = 2 = α̂(v) for F ∈ F and v ∈ V \ {s, t}. The source s and
sink t have α̂(s) = α̂(t) = 0. Then, the bipolar orientations of M are in bijection
with the α̂-orientations of ̂M .

Below, in Theorem 10, we give another encoding of bipolar orientations, which
will turn out to be useful to upper bound the number of bipolar orientations.

Theorem 8. Let B(Gk,�) denote the set of bipolar orientations of Gk,� with
source (1, 1) and sink (k, �) respectively (k, 1). For k, � big enough the number of
bipolar orientations of the grid Gk,� is bounded by 2.18k� ≤ |B(Gk,�)| ≤ 2.619k�.

The lower bound uses reorientations of a canonical 2-orientation of the angle
graph of Gk,�, which looks like a tilted grid. For the upper bound we use Lieb’s
bijection [15] between 2-orientations of the grid and 3-colorings of the squares of
the grid. We encode such a 3-coloring by a sparse sequence, that is a 0-1-sequence
without consecutive 1s.

Theorem 9. Let Mn denote the set of all planar maps with n vertices and
B(M) the set of all bipolar orientations of M ∈ Mn. Then, for n big enough
2.91n ≤ maxM∈Mn |B(M)| ≤ 3.97n.

Since it is not hard to prove that adding edges to non-triangular faces of a
planar map M can only increase the number of bipolar orientations we restrict
our considerations to plane inner triangulations. In the full paper it is shown that
the set of all outerplanar maps with n vertices has maxM∈On |B(M)| = Fn−1,
where Fn is the nth Fibonacci number, and that |B(T2,�)| attains this value. The
proof of the lower bound makes use of this by glueing together k − 1 copies of
T2,�, which yields again a triangular grid.

The following relation is useful to upper bound the number of bipolar orien-
tations for general plane inner triangulations. Let Fb be the set of bounded faces
of M and B the set of bipolar orientations of M . Fix a bipolar orientation B.
The boundary of every triangle Δ ∈ Fb consists of a path of length 2 and an
edge from the source to the sink of Δ. We say that Δ is a + triangle of B if
looking along the direct source-sink edge the triangle is on the left. Otherwise,
if the triangle is on the right of the edge we speak of a − triangle. We use this
notation to define a mapping GB : Fb → {−, +}.

The next result immediately yields an upper bound of 4n for the number of
bipolar orientations. The improvement can be made using the observation that
every vertex is incident to faces of both types.
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Fig. 4. A bipolar orientation, the corresponding +/− encoding and an illustration of
the decoding algorithm

Theorem 10. Let M be a plane inner triangulation and B a bipolar orientation
of M . Given GB, i.e., the signs of bounded faces, it is possible to recover B. In
other words the function B → GB is injective from B(M) → {−, +}|Fb|.

5 Conclusions

In this paper we have studied the maximum number of α-orientations for differ-
ent classes of planar maps and different α. In most cases we have exponential
upper and lower bounds cn

L and cn
U for this number. The obvious problem is to

improve on the constants cL and cU for the different instances. We think, that in
particular improving the upper bound of 8n for the number of Schnyder woods
on 3-connected planar maps is worth further efforts.

Results by Lieb [15] and Baxter [1] yield the exact asymptotic behavior of the
number of Eulerian orientations for the square and triangular grid on the torus.
This yields upper bounds for the number of 2-orientations on the square grid
and the number of Schnyder woods on triangular grids of specific dimensions.
We could not yet utilize these results for improving the lower bounds for the
number of 2-orientations respectively Schnyder woods.

We mentioned several #P -completeness results in Section 2. This contrasts
with spanning trees and planar bipartite perfect matchings for which polynomial
algorithms are available. It remains open to determine the complexity of counting
Schnyder woods and bipolar orientations on planar maps.
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Abstract. We study a variation of the vertex cover problem where it
is required that the graph induced by the vertex cover is connected. We
prove that this problem is polynomial in chordal graphs, has a PTAS in
planar graphs, is APX-hard in bipartite graphs and is 5/3-approximable
in any class of graphs where the vertex cover problem is polynomial (in
particular in bipartite graphs).

Keywords: Connected vertex cover, chordal graphs, bipartite graphs,
planar graphs, APX-complete, approximation algorithm.

1 Introduction

In this paper, we study a variation of the vertex cover problem where the sub-
graph induced by any feasible solution must be connected. Formally, a vertex
cover of a simple graph G = (V, E) is a subset of vertices S ⊆ V which covers
all edges, i.e. which satisfies: ∀e = {x, y} ∈ E, x ∈ S or y ∈ S. The vertex
cover problem (MinVC in short) consists in finding a vertex cover of minimum
size. MinVC is known to be APX-complete in cubic graphs [1] and NP-hard in
planar graphs, [13]. MinVC is 2-approximable in general graphs, [3] and admits
a polynomial approximation scheme in planar graphs, [5]. On the other hand,
MinVC is polynomial for several classes of graphs such as bipartite graphs,
chordal graphs, graphs with bounded treewidth, etc. [7].

The connected vertex cover problem, denoted by MinCVC, is the variation
of the vertex cover problem where, given a connected graph G = (V, E), we
seek a vertex cover S∗ of minimum size such that the subgraph induced by S∗

is connected. This problem has been introduced by Garey and Johnson, [12]
where it is proved to be NP-hard in planar graphs of maximum degree 4. As
indicated in [19], this problem has some applications in the domain of wireless
network design. In such a model, the vertices of the network are connected by
transmission links. We want to place a minimum number of relay stations on
vertices such that any pair of relay stations are connected (by a path which uses
only relay stations) and every transmission link is incident to a relay station.
This is exactly the connected vertex cover problem.

A. Brandstädt, D. Kratsch, and H. Müller (Eds.): WG 2007, LNCS 4769, pp. 202–213, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1.1 Previous Related Works

The main complexity and approximability results known on this problem are
the following: in [21], it is shown that MinCVC is polynomially solvable when
the maximum degree of the input graph is at most 3. However, it is NP-hard
in planar bipartite graphs of maximum degree 4, [10], as well as in 3-connected
graphs, [22]. Concerning the positive and negative results of the approximability
of this problem, MinCVC is 2-approximable in general graphs, [20,2] but it is
NP-hard to approximate within ratio 10

√
5−21, [10]. Finally, recently the fixed-

parameter tractability of MinCVC with respect to the vertex cover size or to the
treewidth of the input graph has been studied in [10,14,17,18,19]. More precisely,
in [10] a parameterized algorithm for MinCVC with complexity O∗(2.9316k) is
presented improving the previous algorithm with complexity O∗(6k) given in
[14] where k is the size of an optimal connected vertex cover. Independently, the
authors of [17,18] have also obtained FPT algorithms for MinCVC and they
obtain in [18] an algorithm with complexity O∗(2.7606k). In [19], the author
gives a parameterized algorithm for MinCVC with complexity O∗(2t · t3t+2n)
where t is the treewidth of the graph and n the number of vertices.

MinCVC is related to the unweighted version of tree cover. The tree cover
problem has been introduced in [2] and consists, given a connected graph G =
(V, E) with non-negative weights w on the edges, in finding a tree T = (S, E′)
of G with S ⊆ V and E′ ⊆ E which spans all edges of G and such that
w(T ) =

∑

e∈E′ w(e) is minimum. In [2], the authors prove that the tree cover
problem is approximable within factor 3.55 and the unweighted version is 2-
approximable. Recently, (weighted) tree cover has been shown to be approx-
imable within a factor of 3 in [16], and a 2-approximation algorithm is proposed
in [11]. Clearly, the unweighted version of tree cover is (asymptotically) equiva-
lent to the connected version since S is a connected vertex cover of G iff there
exists a tree cover T ′ = (S, E′) for some subset E′ of edges. Since in this latter
case, the weight of T ′ is |S| − 1, the result follows.

1.2 Our Contribution

In this article, we mainly deal with complexity and approximability issues for
MinCVC in particular classes of graphs. More precisely, we first present some
structural properties on connected vertex covers (Section 2). Using these proper-
ties, we show that MinCVC is polynomial in chordal graphs (Section 3). Then,
in Section 4, we prove that MinCVC is APX-complete in bipartite graphs of
maximum degree 4, even if each vertex of one block of the bipartition has a
degree at most 3. On the other hand, if each vertex of block part of the bi-
partition has a degree at most 2 and the vertices of the other block have an
arbitrary degree, then MinCVC is polynomial. Section 5 deals with the approx-
imability of MinCVC. We first show that MinCVC is 5/3-approximable in any
class of graphs where MinVC is polynomial (in particular in bipartite graphs, or
more generally in perfect graphs). Then, we present a polynomial approximation
scheme for MinCVC in planar graphs.
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Notation. All graphs considered are undirected, simple and without loops. Un-
less otherwise stated, n and m will denote the number of vertices and edges,
respectively, of the graph G = (V, E) considered. NG(v) denotes the neighbor-
hood of v in G, ie., NG(v) = {u ∈ V : {u, v} ∈ E} and dG(v) its degree that is
dG(v) = |NG(v)|. Finally, G[S] denotes the subgraph of G induced by S.

2 Structural Properties

We present in this subsection some properties on vertex covers or connected
vertex covers. These properties will be useful in the rest of the article to devise
polynomial algorithms that solve MinCVC either optimally (chordal graphs) or
approximately (bipartite graphs,...).

2.1 Vertex Cover and Graph Contraction

For a subset A ⊆ V of a graph G = (V, E), the contraction of G with respect to
A is the simple graph GA = (V ′, E′) where we replace A in V by a new vertex
vA (so, V ′ = (V \ A) ∪ {vA}) and {x, y} ∈ E′ iff either x, y /∈ A and {x, y} ∈ E
or x = vA, y �= vA and there exists v ∈ A such that {v, y} ∈ E. The connected
contraction of G following V ′ ⊆ V is the graph Gc

V ′ corresponding to the iterated
contractions of G with respect to the connected components of V ′ (note that
contraction is associative and commutative). Formally, Gc

V ′ is constructed in
the following way: let A1, · · · , Aq be the connected components of the subgraph
induced by V ′. Then, we inductively apply the contraction with respect to Ai for
i = 1, · · · , q. Thus, Gc

V ′ = GA1◦···◦Aq . Finally, let New(Gc
V ′) = {vA1 , · · · , vAq}

be the new vertices of Gc
V ′ (those resulting from the contraction). The following

Lemma concerns contraction properties that will, in particular, be the basis of
the approximation algorithm presented in Subsection 5.1.

Lemma 1. Let G = (V, E) be a connected graph and let S ⊆ V be a vertex
cover of G. Let G0 = (V0, E0) = Gc

S be the connected contraction of G following
S where A1, · · · , Aq are the connected components of the subgraph induced by S.
The following assertions hold:

(i) G0 is connected and bipartite.
(ii) If S = S∗ is an optimal vertex cover of G, then New(G0) is an optimal

vertex cover of G0.
(iii) If S = S∗ is an optimal vertex cover of G and v ∈ V \S∗ with dGc

S∗ (v) ≥ 2,
then New(G0) is an optimal vertex cover of G0 = Gc

S∗∪{v}.

2.2 Connected Vertex Covers and Biconnectivity

Now, we deal with connected vertex covers. It is easy to see that if the removal of
a vertex v disconnects the input graph (v is called a cut-vertex, or an articulation
point), then v has to be in any connected vertex cover. In this section we show
that, informally, solving MinCVC in a graph is equivalent to solve it on the
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biconnected components of the graph, under the constraint of including all cut
vertices.

Formally, a connected graph G = (V, E) with |V | ≥ 3 is biconnected if for any
two vertices x, y there exists a simple cycle in G containing both x and y. A
biconnected component (also called block) Gi = (Vi, Ei) is a maximal connected
subgraph of G that is biconnected. For a connected graph G = (V, E), Vc denotes
the set of cut-vertices of G and Vi,c its restriction to Vi.

Lemma 2. Let G = (V, E) be a connected graph. S ⊆ V is a connected vertex
cover of G iff for each biconnected component Gi = (Vi, Ei), i = 1, · · · , p, Si =
S ∩ Vi is a connected vertex cover of Gi containing Vi,c.

Lemma 2 allows us to characterize the optimal connected vertex covers of G.

Corollary 1. Let G = (V, E) be a connected graph. S∗ ⊆ V is an optimal
connected vertex cover of G iff for each biconnected component Gi = (Vi, Ei),
i = 1, · · · , p, S∗

i = S∗ ∩ Vi is an optimal connected vertex cover of Gi among the
connected vertex covers of Gi containing Vi,c.

For instance, using Corollary 1, we deduce that for the class of trees or split
graphs MinCVC is polynomial. More generally, we will see in Section 3 that
this result holds in chordal graphs. If we denote by MinPrextCVC (by analogy
with the well known PreExtension Coloring problem) the variation of MinCVC

where given G = (V, E) and V0 ⊆ V , we seek a connected vertex cover S of G
containing V0 and of minimal size, we obtain the following result:

Lemma 3. Let G be a class of connected graphs defined by a hereditary property.
Solving MinCVC in G polynomially reduces to solve MinPrextCVC in the
biconnected graphs of G. Moreover, if G is closed by pendant addition (ie., is
closed under addition of a new vertex v and a new edge {u, v} where u ∈ V ),
then they are polynomially equivalent.

3 Chordal Graphs

The class of chordal graphs is a very well known class of graphs which arises in
many practical situations. A graph G is chordal if any cycle of G with a size
at least 4 has a chord (i.e., an edge linking two non-consecutive vertices of the
cycle). There are many characterizations of chordal graphs, see for instance [7].

In this section, we devise a polynomial time algorithm to compute an optimal
CVC in chordal graphs. To achieve this, we need the following lemma.

Lemma 4. Let G = (V, E) be a connected chordal graph and let S be a vertex
cover of G. The following properties hold:

(i) The connected contraction G0 = (V0, E0) = Gc
S of G following S is a tree.

(ii) If G is biconnected, then S is a connected vertex cover of G.
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Proof. Let S be a vertex cover of G.
For (i): from Lemma 1, we know that G0 = (V0, E0) = Gc

S is bipartite and
connected. Assume that G0 is not a tree, and let Γ be a cycle of G0 with a
minimal size. By construction, Γ is chordless, has a size at least 4 and alternates
vertices of New(G0) and vertices of V \ S. From Γ , we can build a cycle Γ ′ of
G using the following rule: if {x, vAi} ∈ Γ and {vAi , y} ∈ Γ where x, y /∈ S
and vAi ∈ New(G0) (where we recall that Ai is some connected component
of G[S]), then we replace these two edges by a shortest path μx,y from x to y
in G among the paths from x to y in G which only use vertices of Ai (such a
path exists since Ai is connected and is linked to x and y); by repeating this
operation, we obtain a cycle Γ ′ of G with |Γ ′| ≥ |Γ | ≥ 4. Let us prove that Γ ′

is chordless which will lead to a contradiction since G is assumed to be chordal.
Let v1, v2 be two non consecutive vertices of Γ ′. If v1 /∈ S and v2 /∈ S, then
{v1, v2} /∈ E since otherwise Γ would have a chord in G0. So, we can assume
that v1 ∈ (μx,y \ {x, y}) and v2 ∈ μx,y (since there is no edge linking two vertices
of disjoint paths μx,y and μx′,y′); in this case, using edge {v1, v2}, we could obtain
a path which uses strictly less edges than μx,y.

For (ii): Suppose that S is not connected. Then, from (i) we deduce that G0
is not a star and thus, there are two edges {vAi , x} and {x, vAj } in G0 where
Ai and Aj are two connected components of S. We deduce that x would be a
cut-vertex of G, contradiction since G is assumed to be biconnected.

In particular, using (ii) of Lemma 4, we deduce that any optimal vertex cover
S∗ of a biconnected chordal graph G is also an optimal connected vertex cover.

Now, we give a simple linear algorithm for computing an optimal connected
vertex cover of a chordal graph.

Theorem 1. MinCVC is polynomial in chordal graphs. Moreover, an optimal
solution can be found in linear time.

Proof. Following Lemma 3, solving MinCVC in a chordal graph G = (V, E)
can be done by solving MinPrextCVC in each of the biconnected components
Gi = (Vi, Ei) of G. Since Gi is both biconnected and chordal, by Lemma 4,
MinPrextCVC is the same problem as MinPrextVC (in Gi). But, by adding
a pendant edge to vertices required to be taken in the vertex cover, we can easily
reduce MinPrextVC to MinVC (note that the graph remains chordal). Since
computing the biconnected components and solving MinVC in a chordal graph
can be done in linear time (see [7]), the result follows.

4 Bipartite Graphs

A bipartite graph G = (V, E) is a graph where the vertex set is partitioned into
two independent sets L and R. Using the result of [10], we already know that
MinCVC is NP-hard in planar bipartite graphs of maximum 4. Using Lemma
3, we can strengthen this result:
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Lemma 5. MinCVC is NP-hard in biconnected planar bipartite graphs of max-
imum degree 4.

Now, one can show that MinCVC has no PTAS in bipartite graphs of maximum
degree 4.

Theorem 2. MinCVC is not 1.001031-approximable in connected bipartite
graphs G = (L, R; E) where ∀l ∈ L, dG(l) ≤ 4 and ∀r ∈ R, dG(r) ≤ 3, un-
less P=NP.

In Theorem 2, we proved in particular that MinCVC is NP-hard when all the
vertices of one part of the bipartition have a degree at most 3. It turns out
that if all the vertices of one part of this bipartition have a degree at most
2, the problem becomes easy. This property will be very useful to devise our
approximation algorithm in Subsection 5.1.

Lemma 6. MinCVC is polynomial in bipartite graphs G = (L, R; E) such that
∀r ∈ R, dG(r) ≤ 2. Moreover, if L2 = {l ∈ L : dG(l) ≥ 2}, then opt(G) =
|L| + |L2| − 1.

5 Approximation Results

MinCVC is trivially APX-complete in k-connected graphs for any k ≥ 2 since
starting from graph G = (V, E), instance of MinVC, we can add a clique Kk

of size k and link each vertex of G to each vertex of Kk. This new graph G′ is
obviously k-connected and S is a vertex cover of G iff S union the k vertices of
Kk (we can always assume that S �= V ) is a connected vertex cover of G′. Thus,
using the negative result of [15] it is quite improbable that one can improve the
approximation ratio of 2 for MinCVC, even in k-connected graphs. Thus, in this
subsection we deal with the approximability of MinCVC in particular classes
of graphs.

In Subsection 5.1, we devise a 5/3-approximation algorithm for any class of
graphs where the classical vertex cover problem is polynomial. In Subsection 5.2,
we show that MinCVC admits a PTAS in planar graphs.

5.1 When MinVC Is Polynomial

Let G be a class of connected graphs where MinVC is polynomial (for instance,
the connected bipartite graphs). The underlying idea of the algorithm is simple:
we first compute an optimal vertex cover, and then try to connect it by adding
vertices (either using high degree vertices or Lemma 6). The analysis leading to
the ratio 5/3 is based on Lemma 1 which deals with graph contraction.

Now, let us formally describe the algorithm. Recall that given a vertex set
V ′, Gc

V ′ denotes the connected contraction of V following V ′, and New(Gc
V ′)

denotes the set of new vertices (one for each connected component of G[V ′]).
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algoCV C input: A graph G = (V, E) of G with at least 3 vertices.

1 Find an optimal vertex cover S∗ of G such that in Gc
S∗ , ∀v ∈ New(Gc

S∗),
dGc

S∗ (v) ≥ 2;
2 Set G1 = Gc

S∗ , N1 = New(Gc
S∗), S = S∗ and i = 1;

3 While |Ni| ≥ 2 and there exists v /∈ Ni such that v is linked in Gi to at least
3 vertices of Ni do

3.1 Set S := S ∪ {v} and i := i + 1;
3.2 Set Gi := Gc

S and Ni = New(Gc
S);

4 If |Ni| ≥ 2, apply the polynomial algorithm of Lemma 6 on Gi (let S′ be the
produced solution) and set S := S ∪ (V ∩ S′);

5 Output S;

Now, we show that algoCV C outputs a connected vertex cover of G in poly-
nomial time. First of all, given an optimal vertex cover S∗ of a graph G (assumed
here to be computable in polynomial time), we can always transform it in such a
way that ∀v ∈ New(Gc

S∗), dGc
S∗ (v) ≥ 2. Indeed, if a vertex of Gc

S∗ corresponding
to a connected component of S∗ has only one neighbor in Gc

S∗ , then we can take
this neighbor in S∗ and remove one vertex on this connected component (and
the number of such ‘leaf’ connected components decreases, as soon as Gc

S∗ has
at least 3 vertices). Now, using (ii) of Lemma 1, we know that New(Gc

S∗) is an
optimal vertex cover of Gc

S∗ . Then, from New(Gc
S∗), we can find such a solution

within polynomial time.
Moreover, using (i) of Lemma 1 with S∗, we deduce that the graph Gi is

bipartite, for each possible value of i. Assume that Gi = (Ni; Ri, Ei) for iteration
i where Ni is the left set corresponding to the contracted vertices and Ri is the
right set corresponding to the remaining vertices and let p be the last iteration.
Clearly, if |Np| = 1, the the output solution S is connected. Otherwise, the
algorithm uses step 4; we know that Gp is bipartite and by construction ∀r ∈ Rp,
dGp(r) ≤ 2. Thus, we can apply Lemma 6 on Gp. Moreover, a simple proof also
gives that ∀l ∈ Np, dGp(l) ≥ 2. Indeed, otherwise there exists l ∈ Np such that
l has a unique neighbor r0 ∈ Rp. Let {x1, · · · , xj} ⊆ Np−1 with j ≥ 3 and r1
be the vertices contracted in Gp−1 in order to obtain Gp. We conclude that the
neighborhood of {x1, · · · , xj} is {r0, r1} in Gp−1 which is impossible since on the
one hand, Np−1 is an optimal vertex cover of Gp−1 (using (iii) of Lemma 1),
and on the other hand, by flipping {x1, · · · , xj} with {r0, r1}, we obtain another
vertex cover of Gp−1 with smaller size than Np−1! Finally, using Lemma 6, an
optimal connected vertex cover of Gp consists of taking Np and |Np| − 1 of Rp.
In conclusion, S is a connected vertex cover of G.

We now prove that this algorithm improves the ratio 2.

Theorem 3. Let G be a class of connected graphs where MinVC is polynomial.
Then, algoCV C is a 5/3-approximation for MinCVC in G.
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Proof. Let G = (V, E) ∈ G. Let S be the approximate solution produced by
algoCV C on G. Using the previous notations and Lemma 6, the solution S has
a value apx(G) satisfying:

apx(G) = |S∗| + p − 1 + |Np| − 1 (1)

where p is the number of iterations of step 3. Obviously, we have:

opt(G) ≥ |S∗| (2)

Now let us prove that for any i = 1, · · · , p − 1, we also have opt(Gi) ≥
opt(Gi+1)+1. Let S∗

i be an optimal connected vertex cover of Gi. Let ri ∈ Ri be
the vertex added to S during iteration i and let NGi(ri) be the neighbors of ri in
Gi. The graph Gi+1 is obtained from the contraction of Gi with respect to the
subset Si = {ri}∪NGi(ri). Thus, if vSi denotes the new vertex resulting from the
contraction of Si, then (S∗

i \Si)∪{vSi} is a connected vertex cover of Gi+1. More-
over, |S∗

i ∩ Si| ≥ 2 since either ri ∈ S∗
i and at least one of these neighbors must

belong to S∗
i (S∗

i is connected and i < p) or NGi(ri) ⊆ S∗
i since S∗

i is a vertex
cover. Thus opt(Gi+1) ≤ |S∗

i \Si|+1 = opt(Gi)−|S∗
i ∩Si|+1 ≤ opt(Gi)−1. Sum-

ming up these inequalities for i = 1 to p − 1, and using that opt(G) ≥ opt(G1),
we obtain:

opt(G) ≥ opt(Gp) + p − 1 (3)

Moreover, thanks to Lemma 6, we know that opt(Gp) = 2|Np| − 1. Together
with equation (3), we get:

opt(G) ≥ 2|Np| − 1 + p − 1 (4)

Finally, since each vertex chosen in step 3 has degree at least 3, we get |Ni+1| ≤
|Ni| − 2. This immediately leads to |N1| ≥ |Np| + 2(p − 1). Since |S∗| ≥ |N1|, we
get:

|S∗| ≥ |Np| + 2(p − 1) (5)

Combination of equations (2), (4) and (5) with coefficients 4, 1 and 1 (respec-
tively) gives:

5opt(G) ≥ 3|S∗| + 3|Np| − 1 + 3(p − 1) (6)

Then, equation (1) allows to conclude.

5.2 Planar Graphs

Given a planar embedding of a planar graph G = (V, E), the level of a vertex is
defined as follows (see for instance [4]): the vertices on the exterior face are at
level 1. Given vertices at level i, let f be an interior face of the subgraph induced
by vertices at level i. If Gf denotes the subgraph induced by vertices included
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Fig. 1. Level of a planar graph

in f , then the vertices on the exterior face of Gf are at level i + 1. The set of
vertices at level i is called the layer Li.

This is illustrated on Figure 1. The dashed ellipse represents an interior face on
level i−1. Depicted vertices are at level i. There are 3 interior faces (constituted
respectively by the ui’s, by {v1, v2, t} and {t, w1, w2}).

Baker gave in [4] a polynomial time approximation scheme for several prob-
lems including vertex cover in planar graphs. The underlying idea is to consider
k-outerplanar subgraphs of G constituted by k consecutive layers. The polyno-
miality of vertex cover in k-outerplanar graphs (for a fixed k) allows to achieve
a (k + 1)/k approximation ratio.

We adapt this technique in order to achieve an approximation scheme for
MinCVC (MinCVC is NP-hard in planar graphs, see [12]). First of all, note
that k-outerplanar graphs have treewidth bounded above by 3k − 1, [6]. Since
MinCVC is polynomially solvable for graphs with bounded treewidth, [19],
MinCVC is polynomial for k-outerplanar graphs.

Theorem 4. MinCVC admits an approximation scheme in planar graphs.

Proof. Given an embedding of a planar (connected) graph G, we define, as pre-
viously, the layers L1, · · · , Lq of G. For each layer Li, we define Fi as the set
of vertices of Li that are in an interior face of Li. For instance, in Figure 1, all
vertices but the xi’s are in Fi.

Following the principle of the approximation scheme for vertex cover, we define
an algorithm for any integer k > 0. Let Vi = Fi ∪ Li+1 ∪ Li+2 ∪ . . . ∪ Li+k, and
Gi be the graph induced by Vi. Note that Gi is not necessarily connected since
for example there can be several disjoint faces in Fi (there are two connected
components in Figure 1).

Let S∗ be an optimum connected vertex cover on G with value opt(G), and
S∗

i = S∗ ∩Vi. Then of course S∗
i is a vertex cover of Gi. However, even restricted

to a connected component of Gi, it is not necessarily connected. Indeed, S∗ is
connected but the path(s) connecting two vertices of S∗ in a connected compo-
nent of Gi may use vertices out of this connected component. To overcome this
problem, notice that only vertices in Fi or in Fi+k connect Vi to V \ Vi. Hence,
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S∗
i ∪ Fi ∪ Fi+k can be partitioned into a set of connected vertex covers on each

of the connected components of Gi (since Fi and Fi+k are made of cycles). Now,
take an optimum connected vertex cover on each of these connected components,
and define Si as the union of these optimum solutions. Then, we have :

|S∗
i ∪ Fi ∪ Fi+k| ≥ |Si| (7)

Now, let p ∈ {1, . . . , k}. Let V0 = L1 ∪L2 ∪ . . . ∪Lp, G0 be the subgraph of G
induced by V0, S∗

0 = S∗ ∩ V0, and S0 be an optimum vertex cover on G0. With
similar arguments as previously, we have:

|S∗
0 ∪ Fp| ≥ |S0| (8)

We build a solution Sp on the whole graph G as follows. Sp is the union of S0
and of all Si’s for i = p mod k. Of course, Sp is a vertex cover of G, since any
edge of G appears in at least one Gi (or G0). Moreover, it is connected since:

– S0 is connected, and each Si is made of connected vertex covers on the
connected components of Gi;

– each of these connected vertex covers in Si is connected to Si−k (or to S0 if
i = p): this is due to the fact that Fi belongs to Vi and to Vi−k (or V0). Hence,
a level i interior face f is common to Si−k (or S0) and to the connected vertex
cover of Si we are dealing with. Both partial solutions cover all the edges of
this face f . Since f is a cycle, the two solutions are necessarily connected. In
other words, each connected component of Si is connected to Si−k (or S0)
and, by recurrence, to S0. Consequently, the whole solution Sp is connected.

Summing up equation (7) for each i = p mod k and equation (8), we get:

|S∗
0 ∪ Fp| +

∑

i=p mod k

|S∗
i ∪ Fi ∪ Fi+k| ≥ |S0| +

∑

i=p mod k

|Si| (9)

By definition of Sp, we have |Sp| ≤ |S0|+
∑

i=p mod k |Si|. On the other hand,
since only vertices in Fi (i = p mod k) appear in two different Vi’s (i = 0 or
i = p mod k), we get that |S∗

0 ∪ Fp| +
∑

i=p mod k |S∗
i ∪ Fi ∪ Fi+k| ≤ |S∗| +

2
∑

i=p mod k |Fi|. This leads to:

opt(G) + 2
∑

i=p mod k

|Fi| ≥ |Sp| (10)

If we consider the best solution S with value apx(G) among the Sp’s (p ∈
{1, . . . , k}), we get :

opt(G) +
2
k

q
∑

i=1

|Fi| ≥ apx(G) (11)

To conclude, we observe that the following property holds:

Property 1. S∗ takes at least one fourth of the vertices of each Fi.
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To see this property of S∗ ∩ Fi, consider Fi and the set Ei of edges of G that
belong to one and only one interior face of Fi (for example, in Figure 1, if there
were edges {u2, u4} and {u3, v1}, they would not be in Ei). Let ni be the number
of vertices in Fi, and mi the number of edges in Ei. This graph is a collection of
edge-disjoint (but not vertex-disjoint, as one can see in Figure 1) interior faces
(cycles). Of course, S∗ ∩ Fi is a vertex cover of this graph. Since this graph is a
collection of interior faces (cycles), on each of these faces f S∗ ∩Fi cannot reject
more than |f |/2 vertices. In all,

|S∗ ∩ Fi| ≥ ni −
∑

f∈Fi

|f |
2

(12)

But since faces are edge-disjoint,
∑

f∈Fi
|f | = mi. On the other hand, if Nf

denotes the number of interior faces in Fi, since each face contains at least 3
vertices, mi =

∑

f∈Fi
|f | ≥ 3Nf . Since the graph is planar, using Euler formula

we get 1 + mi = ni + Nf ≤ ni + mi/3. Hence, mi ≤ 3ni/2. Finally, |S∗ ∩ Fi| ≥
ni − mi/2 ≥ ni/4.

Based on this property, we get:

opt(G)
(

1 +
8
k

)

≥ apx(G) (13)

Taking k sufficiently large leads to a 1 + ε approximation. The polynomiality
of this algorithm follows from the fact that each subgraph we deal with is (at
most) k + 1-outerplanar, hence for a fixed k we can find an optimum solution in
polynomial time.
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vertex cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005)

15. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
In: IEEE Conference on Computational Complexity, pp. 379–386. IEEE Computer
Society Press, Los Alamitos (2003)

16. Könemann, J., Konjevod, G., Parekh, O., Sinha, A.: Improved approximations for
tour and tree covers. Algorithmica 38(3), 441–449 (2003)

17. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: Improved algo-
rithms for connected vertex cover and tree cover. In: Grigoriev, D., Harrison, J.,
Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 270–280. Springer, Heidelberg
(2006)

18. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: New runtime
bounds for vertex cover variants. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006.
LNCS, vol. 4112, pp. 265–273. Springer, Heidelberg (2006)

19. Moser, H.: Exact algorithms for generalizations of vertex cover. Master’s thesis,
Institut für Informatik, Friedrich-Schiller-Universität Jena (2005)

20. Savage, C.D.: Depth-first search and the vertex cover problem. Inf. Process.
Lett. 14(5), 233–237 (1982)

21. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem
and feedback set problem for graphs with no vertex degree exceeding three. Discrete
Mathematics 72, 355–360 (1988)

22. Wanatabe, T., Kajita, S., Onaga, K.: Vertex covers and connected vertex covers in
3-connected graphs. In: IEEE International Sympoisum on Circuits and Systems,
pp. 1017–1020. IEEE Computer Society Press, Los Alamitos (1991)



Segmenting Strings Homogeneously Via Trees

Peter Damaschke

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden
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Abstract. We divide a string into k segments, each with only one sort of
symbols, so as to minimize the total number of exceptions. Motivations
come from machine learning and data mining. For binary strings we
develop a linear-time algorithm for any k. Key to efficiency is a special-
purpose data structure, called W-tree, which reflects relations between
repetition lengths of symbols. Existence of algorithms faster than obvious
dynamic programming remains open for non-binary strings. Our problem
is also equivalent to finding weighted independent sets of prescribed size
in paths. We show that this problem in bounded-degree graphs is FPT.

1 Introduction

Segmentation problems appear in image and language processing, classification,
and machine learning. Application examples include the automatic segmenta-
tion of text into words in Asian languages, or into parts dealing with one main
subject. The putative quality of segmentations is measured by some objective
function based on plausibility of segments. One type of measure is similarity
within the segments [8]. Segmentation of more abstract (e.g., numerical) linearly
ordered data is a related topic. Efficient algorithms for cutting time series into
somehow homogeneous segments are given in [10], along with interesting moti-
vations for their use. A similar problem with other demands on the segments is
studied in [9]. Segmentations of labeled point sets in higher dimensions by lin-
ear discriminators according to various homogeneity criteria lead to nontrivial
computational problems which are relevant in neural network and decision tree
learning. We refer to the series of papers [1,2,3,4].

Dynamic programming is the obvious design technique for string segmentation
(see [11, Chapter 6, Exercise 5]), but the precise complexity depends on the
objective. In the present work we consider a specific objective. Let S be a string
of n symbols from an alphabet of size b. The segment S[i..j] is the substring of S
from position i to position j. A segmentation splits S into segments and assigns
a designated symbol to each. An exception in a segment is any occurence of a
symbol distinct from the designated one. Our objective is:
Segmentation with Minimized Exceptions (SME)
Given a string S of n symbols from an alphabet of size b, and some k < n,
compute a segmentation of S with at most k segments that minimizes the total
number of exceptions. By SME-Binary we denote SME over alphabet {0, 1}.
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c© Springer-Verlag Berlin Heidelberg 2007



Segmenting Strings Homogeneously Via Trees 215

Segmentation in general received much interest, and the number of exceptions
is one of the natural quality measures for string segmentation, but in spite of that,
SME has not been studied in the algorithms literature, to our best knowledge.
To give a motivation of SME-Binary from machine learning, suppose that some
binary feature f of objects depends randomly on a real-valued attribute x, in
such a way that, for value x, we would observe f = 1 with probability p(x).
Function p is unknown but supposed to be “smooth”, i.e., p oscillates only a
few times on the x-axis. When we have sampled many values of f along the
x-axis, these data sorted by x are naturally described as a string S of symbols
0 and 1. In order to predict f of yet unseen objects with other values x, we
would split S in homogeneous segments, as good as possible, and predict always
the majority symbol in the segment containing the probed x. Then the rate
of prediction errors is roughly the total number of exceptions divided by |S|.
Optimal segmentation can also serve as a subroutine in more complex machine
learning tasks where real-valued attributes must be discretized, as in decision
tree learning. A similar discussion applies to SME over larger alphabets. As
for the choice of k, there is a trade-off between homogeneity of segments and
reliability: A larger k results in fewer exceptions in the string S of training data,
but on the other hand, predictions in smaller segments are less reliable due to
overfitting. Thus we study SME with an arbitrary, user-defined parameter k.
Our contributions: SME is easy to solve by dynamic programming, but for
SME-Binary we will develop less obvious, faster algorithms. In Section 2 we
observe that we never need to split the runs of S, that is, the maximal substrings
of only one sort of symbols. Let r denote the number of runs of S. Runs and
their lengths are trivially computed in an O(n) time preprocessing, thus we
give all further time bounds as functions of b, k, r, where we count arithmetic
operations with integers as O(1) time operations. The time used for the actual
segmentation is significant especially if S comes from noisy data with many short
runs. Dynamic programming solves SME in O(br · min{k, r − k}) time. Then,
we focus on SME-Binary. In Section 3 we show that SME-Binary is equivalent
to computing a minimum weight independent set of exactly m vertices in a
path of (essentially) r vertices, where m ≈ (r − k)/2. A greedy algorithm solves
SME-Binary in O(r + m logm) time, which beats dynamic programmming if
k = ω(log r). In the more relevant case k � r this would become O(r log r). In
Section 4 we use the greedy algorithm just in order to show correctness of yet
another algorithm that works in O(r) time for any k. This result is achieved
by a special data structure that we call the W-tree. From this tree we can read
off an optimal solution for any desired number of segments. It seems that we
cannot get O(r) time much simpler: In Section 5 we briefly discuss another
dynamic programming approach that penalizes every new segment. The catch
is that one has to find the appropriate penalty. On the other hand, our method
for SME-Binary breaks down if b > 2, and dynamic programming is still the
best method that we currently have in the non-binary case. In Section 6 we
show that computing weighted independent sets of exactly m vertices in general
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graphs is fixed-parameter tractable (FPT), with m and the maximum degree d as
combined parameters. Section 7 concludes the paper with some open problems.

2 Runs and Exceptions

We collect a few simple properties of an optimal solution to SME. We call a seg-
mentation alternating if the designated symbols of any two neighbored segments
differ. A run in string S is a maximal contiguous substring with only one sort
of symbol. We call a segmentation regular if every segment is a concatenation of
runs. Throughout the paper, r is the number of runs in S.

Lemma 1. There exists an optimal segmentation which is alternating and regu-
lar, and where any symbol at an end of a segment is different from the designated
symbol of the adjacent segment.

Proof. In a non-alternating segmentation we could merge two neighbored seg-
ments having the same designated symbol, without creating new exceptions.

Next consider, in an alternating segmentation, any two neighbored segments
S[i..j] and S[j + 1..m]., w.l.o.g. with designated symbol 0 and 1, respectively.
Assume, e.g., that S[j] = 1, the designated symbol of the segment to the right.
Then we could move the border and replace the two segments with S[i..j − 1]
and S[j..m], thereby reducing the number of exceptions. Hence we can always
suppose S[j] �= 1, and similarly S[j + 1] �= 0, in some optimal solution. We
remark that, if i = j, the left segment becomes empty, in which case the num-
ber of segments decreases as well, and perhaps further segments with identical
designated symbols can be merged.

Finally, if a segmentation with the above properties cuts through some run,
then the symbol in the run is different from the designated symbols of two
neighbored segments. Hence every position in the run is an exception in both
segments, and we can move borders without changing the number of exceptions,
until the run is entirely in one segment, or a segment disappears. ��

Theorem 1. SME can be solved in O(br · min{k, r − k}) time.

Proof. We apply dynamic programming. First consider the case k < r − k.
Let E(i, j, s), with i ≤ k, j ≤ r, and symbol s, indicate the optimal number
of exceptions in an alternating, regular segmentation of the first j runs into
exactly i segments, with s as designated symbol of the jth run. (By Lemma 1
we need to consider such segmentations.) For i > j let E(i, j, s) = ∞. It is easy
to initialize E(i, 1, s) for any i, s. For the O(bkr) bound, we show for each j > 1
how to compute all E(i, j, s) from all E(i, j − 1, s) in O(bk) time. Let the jth
run consist of lj copies of symbol sj . The following recursion is obvious:

E(i, j, s) = min{E(i, j − 1, s), min
t�=s

{E(i − 1, j − 1, t)}} + qj,slj ,

where qj,s = 0 if s = sj , and 1 otherwise. For any fixed i we apply it simultane-
ously to all symbols s as follows. Find mint{E(i − 1, j − 1, t)} in O(b) time. The
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minimum is attained by some t0, ties are broken arbitrarily. For each s �= t0 we
have mint�=s{E(i−1, j−1, t)} = E(i−1, j−1, t0), and mint�=t0{E(i−1, j−1, t)}
is also found in O(b) time. Hence we can compute the second term in the recur-
sion in O(b) time for all s together, for any fixed i, and then we can evaluate the
recursion in O(bk) time for all i, s.

Case k ≥ r − k is similar, but now we let i count the runs that continue the
previous interval, and adjust the recursive formula for E accordingly. ��

3 Greedy Algorithm for Binary Strings

In a regular segmentation, we call a run x an exception run if the symbol in x
differs from the designated symbol of the segment x belongs to. By Lemma 1,
every instance (S, k) of SME-Binary has an optimal segmentation which is al-
ternating and regular, and where no segment begins or ends with an exception
run. (However, the first or last run of S may be an exception run.) Thus, no
two exception runs are adjacent. Conversely, any set X of pairwise non-adjacent
runs describes a segmentation with X as the set of exception runs. Thus we can
henceforth characterize a segmentation simply by the set X .

Adding to X a new exception run x (not adjacent to any member of X)
decreases the number of segments by 2, unless x is the first or last run in S, in
which case we get only one segment less. We decide in the beginning which of
the two outer runs be in X . Only two options exist for any r, k: If r − k is even,
either no or both outer runs are in X . If r − k is odd, exactly one outer run
must be in X . For given (S, k) we consider the two options separately. That is, it
remains to decide which inner runs be in X . An outer run put in X is removed
from the instance, so that its neighbor becomes an outer run, and it cannot
be added to X anymore. Since now every new exception is an inner run and
decreases the number of segments by 2, our instance of SME-Binary is reduced
to two instances of the following problem: Given a binary string and a number
m, find m pairwise non-adjacent inner runs of minimum total length.

After trivial preprocessing, S is already given as the sequence of lengths of
runs. Note that m ≈ (r − k)/2, up to a small additive constant depending on
the cases above. Obviously, the latter problem can be further rephrased:

Lemma 2. As instance of SME-Binary is linear-time reducible to two instances
of the following problem: Given a path P with r weighted vertices and a number
m < r/2, compute a minimum weight independent set X with exactly m vertices,
avoiding the two outer vertices of P . ��

We still refer to this “graph-theoretic” formulation of the problem as SME-
Binary, and denote the number of vertices by r, this will not cause confusion.
Since the weights of the outer vertices are irrelevant, we may set them to any
huge constant. These two dummy vertices will simplify the presentation of the
algorithms. In the following, the length of a path is the number of vertices, the
weight of vertex v is l(v), and l(X) is the total weight of a set X of vertices.
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Greedy Algorithm for SME-Binary:

(1) Do the following m times. Merge an inner vertex v with minimum l(v) and
its neigbors u, w into a new vertex z with l(z) := l(u) + l(w) − l(v).
(2) After termination of (1) we have obtained a path of vertices labeled with odd-
length subpaths of the original path, in the obvious sense. Output as members
of X all original vertices which have even positions in these subpaths.

Clearly, the segments of our segmentation correspond to the vertices of the
path produced in (1), and these segments have always odd length. In the follow-
ing we prove correctness of the greedy algorithm. Trivially, X is an independent
set. Induction on m easily shows |X | = m. It remains to prove that l(X) is
minimized among all independent sets of size m.

Lemma 3. Let v be some inner vertex with minimum l(v). There exists an
optimal solution X that contains either v or both its neighbors u, w.

Proof. Let X be a solution with v /∈ X . If also u, w /∈ X , then replace any vertex
in X with v and obtain another solution that is no worse. If u ∈ X but w /∈ X ,
replace u with v (the other case is symmetric). ��

Theorem 2. The greedy algorithm solves SME-Binary correctly and can be im-
plemented to work in O(r + (r − k) log(r − k)) time.

Proof. We show that the first step of (1) transforms a given instance (P, m)
into an equivalent instance (Q, m − 1), where Q is the path obtained from P
by merging u, v, w into z. Consider any solution X to (P, m) that enjoys the
property of Lemma 3. Let Y be the solution to (Q, m − 1) which contains all
vertices of X other than u, v, w, and where z ∈ Y iff u, w ∈ X . Since X consists
of inner vertices only, so does Y . We also have |Y | = m−1 and l(Y ) = l(X)−l(v).
Conversely, for any solution Y to (Q, m − 1), let X be the solution to (P, m)
which contains all vertices of Y other than z, and where u, w ∈ X if z ∈ Y ,
and v ∈ X if z /∈ Y . Note that X has the property as in Lemma 3, |X | = m,
l(X) = l(Y ) + l(v), and X consists of inner vertices only (since Y does). This
correspondence makes the problem instances (P, m) and (Q, m − 1) equivalent:
By our definition of l(z), the objective function is shifted in both directions by
the same amount l(v). In particular, the transformations turn an optimal X into
an optimal Y and vice versa.

By induction, loop (1) eventually yields an equivalent trivial instance (R, 0)
with ∅ as the only solution. In order to get back an optimal solution to (P, m)
we may trace back (1), expanding in each step the vertices merged by (1) and
applying the above transformation. We show that (2) gives the same result in
a simpler way. This is done by induction on the (odd) length of any subpath of
P merged into one vertex of R: A subpath of one vertex has no vertices with
even positions, and after any expansion of a vertex into three, the solution still
contains exactly the vertices with even positions in their respective subpaths.
This shows the correctness.

Phase (2) is done in O(r) time. Phase (1) may be implemented with a doubly
linked list for the vertices and a priority queue that returns the minimum and
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supports deletions and insertions in logarithmic time (in the maximum size of
the queue) per operation. Note that the priority queue is needed only for the
m ≈ (r − k)/2 smallest weights. ��

The greedy algorithm is faster than dynamic programming (Theorem 1) if k =
ω(log r). In the next section we get rid of the priority queue and the logarithmic
factor by more structural preprocessing on the sequence. We build and use, in
linear time, a special tree describing monotonicity relations in the sequence of
weights. This tree gives us the results of the greedy algorithm (hence correct
results) without actually performing its steps.

4 Tree-Based Linear-Time Algorithm for Binary Strings

Remember that, after some preprocessing, an instance of SME-Binary is rep-
resented as a path of weighted vertices (v1, . . . , vr), where l(v1), l(vr) do not
matter, hence we may set them to a huge number, e.g., larger than the sum of
all other weights. Then l(v1), l(vr) remain always maximal, even after any merge
operations. In the following we build our supporting data structure.
W-trees: We multiply the weights of vertices in their given order alternatingly
by −1 and +1, the start sign is arbitrary. Distinguish carefully between these
signed weights and their absolute values, simply called weights further on. We
will sometimes compare disjoint segments by their total (signed) weights. For
tie-breaking when equality occurs, we apply some arbitrary priority rule, e.g.,
the left interval is always considered the “smaller” one in such cases.

Definition 1. An ordered set of at least three vertices is a W-segment if the
weights of all vertices are, alternatingly, local maxima and minima, where the
weight of the first and last vertex, respectively, is larger than the weight of its
only neighbor in the segment.

The name W-segment is inspired by the “zigzag” up-and-down pattern of
weights. Now we construct a rooted and ordered tree which we call a W-tree
of the sequence. To avoid confusion, we speak of nodes rather than vertices in
the tree. The term ordered tree means that a left-to-right order is defined among
the children of any node. This naturally induces an order on the leaves. A sibship
is the orderd set of all children of some node.

Definition 2. A rooted and ordered tree with signed and weighted nodes is called
a W-tree of a sequence if it enjoys the following properties.
(i) The leaf nodes correspond to the vertices in the given sequence, in the given
left-to-right order and with the given signed weights.
(ii) The signed weight of any non-leaf is the sum of signed weights of its children.
(iii) The ordered set of children of any node is a W-segment (except perhaps the
root which may have exactly two children).
(iv) The weight of a node is no larger than the weight of its parent.
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(v) Every node (except the leaves and perhaps the root) has an odd number
of children. In every sibship of odd size, we call a node odd/even if it has an
odd/even position in the sibship (where the leftmost node has number 1, etc).
(vi) The weight of an even node is never larger than the weights of its (odd)
neighbored siblings.

Properties (v) and (vi) follow from (iii), but we stated them for later use.

Lemma 4. We can construct a W-tree of a weighted path in O(r) time.

Proof. We describe an algorithm that constructs a W-tree. At any moment we
maintain an ordered set of trees and consider the sequence of their roots in their
natural left-to-right order. Initally, all these trees consist of only one node, hence
the sequence of roots is just the given sequence.

In every step we take an arbitrary W-segment of current roots and connect
them to a new root, the signed weight of which is defined according to (ii). In
the new sequence of roots, the signs of weights still alternate, this is obvious
from Definition 1. Thus we can iterate this step. Since the two outermost roots
have huge weights, we find some W-segment in every step, i.e., the process stops
only when everything is merged into one tree (r odd) or two trees (r even). In
the latter case we connect the two huge-weight roots again to a new root.

We obtain in fact a W-tree: (i) holds since the sequence of leaves and their
signed weights are never changed. Properties (ii) and (iii) are true by construc-
tion. These and Definition 1 yield (iv), and the rest follows from (iii).

Finally we argue that the construction can be done in O(r) time. The current
sequence of roots is stored as a doubly-linked list to support fast local changes.
Observe that some W-segment is found around an arbitrary local minimum
in the sequence of weights. More precisely, a local minimum together with its
two neighbors form a W-segment (which might be extended by pairs of further
elements in both directions, if their weights satisfy Definition 1). Adding the
signed weights and replacing a W-segment with a new root costs O(1) time per
node. By storing all local minima separately in a queue, we can take a local
minimum in each step in O(1) time. This is correct because each local minimum
is preserved until we use the corresponding node in a W-segment: Since, by
(iv), a parent’s weight is not smaller than the children’s weights, the weights of
the neighbors of any local minimum can only increase. In summary, every node
is processed O(1) times. Since inner nodes of the W-tree have at least three
children, the W-tree has size O(r), which gives the O(r) time bound. ��

Tracing: Now we “trace” our greedy algorithm for SME-Binary: For every step
we update our W-tree so as to obtain a W-tree of the shorter string.

Recall that the greedy algorithm merges some vertex v with minimum l(v) and
its neighbors u, w, and assigns the merged vertex the weight l(u) + l(w) − l(v).
Due to (iv) and (vi), we may always take an even leaf as v. Let u′ and w′ be
the siblings of v next to the left and right, respectively, in the W-tree. Either we
have u′ = u, or u′ is an ancestor of u, and similarly with w′ and w. Moreover,
u′, w′ are odd nodes. We proceed step by step as follows in the resulting cases.
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(1) None of u′, w′ is a leaf: Then merge u′ and w′ to a new odd node z′. The
children of z′ are, from left to right, the children of u′, node v, and the children
of w′. The signed weight of z′ is the sum of signed weights of u′, v, w′.
(2) Exactly one of u′, w′ is a leaf, say w′ (the other case is symmetric): Then u′

adopts v and w′ as two new rightmost children. To the signed weight of u′ add
the signed weights of v and w′.
(3) Both u′ and w′ are leaves: Then merge u′, v, w′ to a leaf z′. The signed weight
of z′ is the sum of signed weights of u′, v, w′.

These steps are repeated, with updated u′, w′, until case (3) appears. Further-
more, whenever a node retains only one child, parent and child have the same
signed weight, and we identify them immediately by contracting the edge.

The procedure will always terminate, as v “goes down the tree”. Check that,
due to the choice of v, every step preserves properties (i)-(vi) of a W-tree. Hence,
upon termination we get a W-tree of the updated sequence, as claimed.

The following properties of the tracing procedure are crucial: An even node
remains even until it is merged with its neighbored odd siblings into a new
odd node. Odd nodes are merged into odd nodes only. Hence an even node
never changes its (signed) weight until it disappears. The even node that disap-
pears next is always one with smallest weight. It follows that the even nodes are
processed in their fixed order of increasing weights. Hence, after any number of
steps of the greedy algorithm, the W-tree obtained by tracing contains exactly
those even nodes with weights above some threshold thr, plus certain odd nodes.

Getting the high nodes: Given a threshold thr, we call a node high/low
if its weight is larger/smaller than thr. The following procedure Extract(thr)
constructs, from the initial W-tree of the given string, the W-tree obtained by
tracing up to weight thr, but without actually performing the tracing.

Extract(thr):
(1) Retain the high even nodes and all their ancestors and siblings. Delete all
other nodes.
(2) In every sibship that contains high even nodes, do the following. Between
any two high even nodes, and on the left/right side of the leftmost/rightmost
high even node in the sibship, merge all siblings into one node and and let the
signed weight of the new node be the sum of signed weights of merged siblings.

Lemma 5. Procedure Extract(thr) computes, in O(r) time, a W-tree of the seg-
mentation obtained by running the greedy algorithm for SME-Binary as long as
the weight of the middle vertex in a merging step does not exceed thr.

Proof. (sketch) Every low even node becomes a leaf during tracing, and then it
is, together with its two neighbored siblings, replaced with one new node in the
sibship. It follows that all siblings between the high even nodes are eventually
merged. Furthermore, invariant (ii) holds, so that adding the signed weights is
also correct. The time bound is obvious. ��
Once we have the W-tree, it is easy to reconstruct the segmentation in linear
time, since its leaves represent the segments.
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Number of even nodes and final result: To get out the desired number k
of segments, we have to use the appropriate thr in Extract(thr).

Lemma 6. A W-tree with e even nodes has k = 2e + 1 leaves if the root has an
odd number of children, and k = 2e + 2 leaves if the root has two children.

Proof. It suffices to show the first part, then the second part follows immediately.
We proceed by induction. The Lemma is true if the W-tree is just a root with
an odd number of leaves as children. If we make some leaf the parent of a new
sibship of, say, 2l + 1 nodes, then e and k increases by l and 2l, respectively. ��
By Lemma 6, all we need is the (k − 1)/2 or (k − 2)/2 even nodes with largest
weights, to get a W-tree of a segmentation into k segments. Summarizing the
process, we can now state the main result. Regarding linear-time selection see,
e.g., [6], or common textbooks on algorithm design. Selection means to determine
a prescribed number of largest elements in an unsorted set of numbers.

Theorem 3. SME-Binary can be solved in O(r) time for any k.

Proof. From the given string, build a W-tree as in Lemma 4. By Selection,
mark the number of high even nodes specified in Lemma 6. Let thr be the
smallest weight of the high even nodes. Compute a W-tree of a segmentation by
Extract(thr) as in Lemma 5, and from the leaves of this W-tree straightforwardly
recover the segmentation. ��
There remain some practical issues. Selection in worst-case linear time suffers
from a large hidden constant. We may use randomized selection with pivot ele-
ments and content ourselves with expected linear time (which, however, should
be faster in general). For k � r, we may determine the high even nodes in time
O(r + k log k) (with small hidden constant) using a priority queue. We would
consider the even nodes of the W-tree at increasing distance from the root, since
due to (iv) we can prune a subtree below a current node x if l(x) is already
smaller than the kth largest weight found so far.

The algorithm is easy to apply. We illustrate this for string 001010001110011,
where k is even, and the outer runs are not exception runs. The dendrogram-
like table shows a W-tree. Note that the huge-weight dummy vertices are not
displayed. The even nodes (printed in bold) with largest weights yield the fol-
lowing segment borders for k = 2, 4, 6: 00101000|1110011, 00101000|111|00|11,
00|101|000|111|00|11. The other cases (where both outer runs are exception runs,
or k is odd) give worse solutions for this string.

| −2 | +1 | − 1 | +1 | −3 | +3 | −2 | +2 |
| | +1 | | +3 |
| −4 | |

5 Dynamic Programming with Penalties

In this section we judge another dynamic programming approach to SME that
easily comes to mind. Let us scan the given string S from left to right and fix
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some penalty p > 0 for changing the designated symbol, thus starting a new
segment. Define the score of a segmentation as the number of exceptions plus
the sum of penalties. A segmentation with minimum score is computable in
O(br) time: For each symbol s in the alphabet and each prefix of S, maintain a
segmentation of this prefix, with s as the last designated symbol, and minimum
score. The O(b) calculations needed for extending the prefix by a new run are
obvious. The catch is that we must find a penalty p which gives the desired
number k of segments. In the following we discuss only case b = 2 closer.

If k is even/odd, we force the “penalty algorithm” to output an even/odd
number j of segments by appending an empty segment in the end, if j has
the wrong parity. That is, we add another p to the score in that case, and get
j := j+1 segments. This modification is motivated by an observation that might
be interesting in itself:

Theorem 4. For a given binary string, let x(k) be the minimum number of
exceptions in a segmentation with k segments, where argument k is restricted to
the even/odd positive integers. Then, function x(k) is monotone decreasing and
convex.

Proof. Both assertions follow from correctness of the greedy algorithm for SME-
Binary: Each step reduces k by 2, increases the number of exceptions by the
weight of the middle vertex of the merged triple, and these weights increase. ��

Remark: Remember that the greedy optimal solutions for all k with the same
parity are “nested”, i.e., new borders of segments are inserted when k grows.
Interestingly this is in general not true for different parities. An example is
S = 00110001. The only segmentation with k = 2 and 2 exceptions is 0011000|1,
and the only segmentation with k = 3 and 1 exception is 00|11|0001.

Back to dynamic programming: The score of a segmentation with k segments and
x exceptions is x + pk. Convexity (Theorem 4) and simple geometric reasoning
yields that, for any k of the considered parity (even or odd) there exists an
integer p so that an optimal segmentation with k segments has also the optimal
score with respect to penalty p. That is, in principle we can solve SME-Binary
via O(r)-time dynamic programming with a suitable penalty p, however it seems
that binary search is needed to find this p. We conclude that the penalty approach
looks promising at first glance, but it does not give us a simpler and (practically)
faster algorithm.

6 A Parameterized Weighted Independent Set Problem

The graph problem specified in Lemma 2 (for general graphs rather than just
paths) is interesting in itself. In the following we call it Cardinality Minimum

Weight Independent Set (CMWIS). (Here, minimum may also be maxi-
mum without changing the problem, since m is fixed.) By Theorem 3, CMWIS
on paths of length r is solable in O(r) time. Slightly more generally, CMWIS is
linear for graphs with maximum degree d = 2. By way of contrast we have:
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Theorem 5. CMWIS is NP-complete for graphs of any fixed degree d ≥ 3.

Proof. We reduce Maximum Independent Set for degree d ≥ 3 to CMWIS:
Assign unit weights to every vertex. An independent set of size at least m exists
iff an independent set of size exactly m and weight at most m exists. ��
Due to this hardness result it is sensible to consider parameterized algorithms
(see [7,12] for introductions). An alternative as in Lemma 3 gives:

Theorem 6. CMWIS on graphs of degree d, with exactly m vertices in the so-
lution, can be solved in O∗(xm) time, where x = (

√
2d2 − 2d + 1+1)/2 ≈ d/

√
2.

Proof. We give a search tree algorithm. Whenever a new vertex has been added
to the independent set, remove this vertex and its neighbors from the graph.
Consider any node in the search tree where fewer than m vertices are chosen
so far. Let v be a vertex in the rest graph with minimum l(v). In one branch,
add v to the solution. In all other branches (where v is not taken) we can add
at least two of v’s neighbors to the solution, because: If only one neighbor u
is taken, we can replace u with v in any solution and get an independent set
with smaller weight. If no neighbor of v is taken, some other vertex w adjacent
to neither v nor previously taken vertices must be in the solution (since size m
is not yet exhausted), but then we can replace w with v. Hence we reduce m
by 1 in one branch and by 2 in at most

(

d
2

)

branches. Characteristic equation
x2 = x + d(d − 1)/2 yields the base. ��
The time is likely to be improved by more advanced techniques for parameterized
algorithms. CMWIS is solved in [5] for the more general class of d-degenerate
graphs, however the time as a function of the parameters is O∗(2dm) there.
Finally we observe that a small problem kernel is very easy to obtain:

Theorem 7. CMWIS has a kernel of at most (d + 1)(m − 1) + 1 vertices.

Proof. We claim that the set K of (d + 1)(m − 1) + 1 vertices with smallest
weights contains an optimal solution: Consider any X , |X | = m, where K ∩ X
is independent and a vertex v ∈ X \ K exists. At most m − 1 vertices of X are
in K, each having at most d neighbors in K. Hence some u ∈ K is neither in X
nor adjacent to any vertex of K ∩X . Replacing v with u in X reduces l(X), and
K ∩ X is still independent. In particular, if we start from an independent X ,
some iterations give an independent set of smaller weight, contained in K. ��
Computing a minimum weight independent set with m vertices is (probably)
not FPT with parameter m alone: If all weights are equal, we have to figure out
existence of an independent set with m vertices, but this is known to be W [1]-
complete. However, the same problem with dual parameter n − m is a variation
of Weighted Vertex Cover, thus it is FPT even for unbounded degree.

7 Some Open Problems

Our main result is a linear-time algorithm for partitioning a binary string into
segments with one sort of symbols, so as to minimize the total number of
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exceptions. Our algorithm is based on a specific tree data structure. It remains
open whether similar ideas can beat dynamic programming also for alphabet size
b > 2. We announce that, in the full paper, we give an O(r(k +log b)) time algo-
rithm that still uses dynamic programming, but after a deeper problem analysis
extending some observations from Section 2-3. Other interesting directions are
SME on data streams, and partioning sequences of real numbers into segments
where large and small numbers abound, with varying thresholds.
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Abstract. Cographs are those graphs without induced path on four
vertices. A graph G is a probe cograph if its vertex set can be partitioned
into two sets, N (non-probes) and P (probes) where N is independent
and G can be extended to a cograph by adding edges between certain
non-probes. A partitioned probe cograph is a probe cograph with a given
partition in N and P .

We characterise probe cographs in several ways. Moreover, we char-
acterise partitioned probe cographs in terms of five forbidden induced
subgraphs. Using the forbidden induced subgraph characterisation, we
give a linear-time recognition algorithm for probe cographs, improving
the recent quadratic-time recognition algorithm by Chandler et al. Our
algorithm is a modification of the linear-time recognition algorithm for
cographs by Corneil et al.

1 Introduction

In 1994, in the context of genome research, Zhang [26] introduced probe interval
graphs. A graph is a probe interval graph if its vertex set can be partitioned into
two sets, probes P and non-probes N , such that N is independent and new edges
can be added between certain non-probes in such a way that the resulting graph
is an interval graph. This definition can of course readily be generalized to some
graph class C: A graph is probe C if its vertex set can be partitioned into two
sets, probes P and non-probes N , such that N is independent and new edges
can be added between non-probes in such a way that the resulting graph is in C.
If a partition into probes and non-probes is given, we talk about a partitioned
probe class, otherwise about an unpartitioned one.

Probe interval graphs have been further discussed in [19,22,23]. In [25] and
[24], probe interval graphs which are trees, respectively, 2-trees are considered.

Actually, already in 1989 — before Zhang’s article — Hertz [15] defined what
he called slim graphs, which are in fact probe Meyniel graphs, and proved that
these are perfect. Hoàng and Maffray [16] used Hertz’ construction to define
probe Gallai graphs.

In a series of recent articles [2,3,5,6,7,8,10,13,21] several probe classes are dis-
cussed. So far, only probe graphs of perfect graphs have been considered; here,
perfect graphs are those graphs in which the chromatic number of each induced
subgraph is equal to its clique number, and it is known that perfect graphs can

A. Brandstädt, D. Kratsch, and H. Müller (Eds.): WG 2007, LNCS 4769, pp. 226–237, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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be recognized in polynomial time. The results established lead to the following
interesting conjectures.

Probe Perfect Graph Conjecture (PPGC) ([10]). Partitioned probe perfect
graphs are polynomially recognizable.

Strong Probe Perfect Graph Conjecture (SPPGC) ([10]). Probe perfect
graphs are polynomially recognizable.

Note that if recognizing a class C is NP-complete, then recognizing partitioned
probe graphs of C is also NP-complete: consider partitioned graphs with at most
one non-probe. We conjecture that the converse holds, too.

Probe Graph Conjecture (PGC). Partitioned probe graphs of C are polyno-
mially recognizable whenever C is polynomially recognizable.

Strong Probe Graph Conjecture (SPGC). Probe graphs of C are polynomi-
ally recognizable whenever C is polynomially recognizable.

As perfect graphs can be recognized in polynomial time, the truth of each of our
conjectures implies the corresponding probe perfect graph conjecture.

Cographs (graphs without induced path on four vertices) form, in a sense,
a basic class of perfect graphs and are well-investigated in the literature. In
[10], Chang et al. give an O(n3) recognition for partitioned probe cographs and
an O(n5) recognition for probe cographs (n is the number of vertices of the
input graph). Chandler et al. [5] improved this to O(n2) by showing that the
recognition of unpartitioned probe cographs can be reduced to the partitioned
case in linear time and reducing recognition of partitioned probe cographs to the
recognition of partitioned probe distance hereditary graphs, for which they give
an O(n2) algorithm.

In this article we will characterise probe cographs in several ways. As a by-
product, we give several characterisations for partitioned probe cographs, one
of which is in terms of five forbidden induced subgraphs. Using this forbidden
subgraph characterisation we give a linear recognition algorithm for partitioned
probe cographs by modifying the linear-time recognition algorithm for cographs
by Corneil et al. [12]. As mentioned above, the recognition of unpartitioned
probe cographs can be reduced to the partitioned case in linear time, therefore
unpartitioned probe cographs can be recognized in linear time, as well.

All graphs considered are finite, undirected and simple. Thus, the edge set E of
a graph G = (V, E) is a subset of

(

V
2

)

, the set of all 2-element subsets of the vertex
set V . We often write xy ∈ E for {x, y} ∈ E. The complement of G is written G.
For two disjoint sets of vertices X and Y , X 1©Y (X 0©Y ) (pronounced “join” and
“cojoin”, respectively) means that every vertex in X is adjacent (nonadjacent) to
every vertex in Y . A set of vertices is called independent or stable if the vertices
are pairwise non-adjacent and it is called a clique if they are pairwise adjacent.
The neighbourhood N(v) of a vertex v is the set of its neighbours. For a set of
vertices X we write N(X) =

⋃

v∈X N(x) \ X . If necessary, the graph in which
the neighbourhood is considered is written as a subscript: NG(x). Given a set of
vertices X ⊆ V , the subgraph induced by X is written G[X ] and G − X stands
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for G[V \ X ]. We often identify a subset of vertices with the subgraph induced
by that subset, and vice versa.

For a set X and a singleton {x}, we usally write X +x for X ∪{x} and X −x
for X \ {x}. A module M in a graph is a set of vertices such that every vertex
outside M is either adjacent to all vertices in M , or to none; if M = {x, y}, then
x, y are called twins.

Pn denotes the chordless path on n vertices. The vertices of degree one are
called the endpoints and the others the midpoints of the path. Cn denotes the
chordless cycle on n vertices.

For convenience, we will use the following notion. For a graph class C and
a graph G = (V, E), a partition V = P ∪ N with an independent set N is
called a valid partition (with respect to C) if there exists E′ ⊆

(

N
2

)

such that
G′ = (V, E∪E′) is a member of C. Such a graph G′ is then called a valid extension
for G. Thus, G is a probe graph of C if and only if G has a valid partition, and
G = (P, N, E) is a partitioned probe graph of C if and only if V (G) = P ∪ N is
a valid partition.

2 Probe Cographs Versus Singular Cograph Contractions

Recall that cographs (or complement-reducible graphs) [11,12] are those graphs
that can be constructed from a single vertex by repeated applications of comple-
ment and disjoint union. They are precisely the P4-free graphs and are known
under many different names and definition, see for example [18]. Cographs are
discussed in more detail in section 4.

Cographs were generalized to cograph contractions as follows. A graph G
is called a cograph contraction if there exists a cograph H together with some
pairwise disjoint independent sets S1, . . . , St in H such that G is obtained from H
by contracting each Si to a single vertex si and then making the vertices s1, . . . , st

to a clique. Cograph contractions have been introduced and investigated in [17]
in connection to graph precoloring extensions and perfection, and have been
characterised in [20]. In [28] it is shown that the set of minimal forbidden induced
subgraphs for cograph contractions is finite.

A special case of cograph contractions where all independent sets S1, . . . , St

are one-element sets has a close relationship to probe cographs. We formulate
this situation in a more general setting.

Definition 1. Let C be a class of graphs. A graph G is called a singular C
contraction if there exists a graph H ∈ C together with a (not necessarily inde-
pendent) set S of vertices of H such that G is obtained from H by making S to
a clique.

Let co-C be the class consisting of the complements of all graphs in C. C is self-
complementary if C and co-C coincide. Singular C contractions are related to
probe graphs of C as follows.
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Proposition 1. A graph G is a probe graph of C if and only if G is a singular
co-C contraction. In particular, if C is self-complementary, then probe graphs of
C coincide with the complements of singular C contractions.

Proof. Suppose that G = (V, E) is probe graph of C, and let V = P ∪ N be a
valid partition with N independent and E′ ⊆

(

N
2

)

such that H = (V, E ∪ E′) is
a member of C. Then G is obtained from H ∈ co-C by making N to a clique.
That is, G is a singular co-C contraction.

Conversely, suppose G is a singular co-C contraction. Let H ∈ co-C together
with a subset S ⊆ V (H) such that G is obtained from H by making S to a clique.
Then S is an independent set of G, and the graph G′ = (V, E ∪ E′) coincides
with H, where E′ is the set of edges in H with both endvertices in S. Thus, as
G′ ∈ G, G is a probe graph of C. ��

Corollary 1. Probe cographs are exactly complements of singular cograph con-
tractions. Also, probe perfect graphs are exactly complements of singular perfect
contractions.

A bull consists of five vertices, a, b, c, d and e, and a, b, c form a triangle and d is
adjacent exactly to a, e is adjacent exactly to b. Singular cograph contractions,
hence (complements of) probe cographs, can be characterised as follows.

Theorem 1. A graph G is a singular cograph contraction if and only if G has
a clique Q such that every P4 has two vertices in Q, every P5 has its triangle in
Q, and every bull has a vertex of degree one or a vertex of degree two in Q.

The proof of Theorem 1 will be given in the full version of this paper.

3 Characterising Probe Cographs

In this section we characterise unpartitioned probe cographs in several ways.
Let N be an independent set in G = (V, E). Following [5] we call two vertices

x, y in G twins with respect to N if both x, y are in N or outside N and x, y are
twins in G, or x ∈ V \ N , y ∈ N and N(y) − x = N(x) \ N .

In a bull, vertices belonging to the triangle of the bull are called mid-points
of the bull.

Theorem 2. The following statements are equivalent for any graph G.

(i) G is a probe cograph;
(ii) G admits an independent set N meeting every P4 in two vertices, every P5

in three vertices, and every bull in a mid-point;
(iii) G is a singular cograph contraction;
(iv) G admits an independent set N such that, for each induced subgraph H of

G with at least two vertices, H has two twins with respect to N ∩ V (H).
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Proof. By Corollary 1, (i) ⇔ (iii). By Theorem 1, (iii) ⇔ (ii).
(i) ⇔ (iv): A corresponding characterisation for partitioned probe distance-
hereditaray graphs has been observed in [5]. The proof of [5, Theorem 1] can be
adopted here by noting that any cograph with at least two vertices has always
two twins. ��
A graph is called weakly chordal ([14]) if it does not contain any C� or C�, � ≥ 5,
as an induced graph.
Corollary 2. Probe cographs are P6-free weakly chordal.
We will see in the next section that cographs can be even recognized in linear time
(hence also singular cograph contractions). At this time we are unable to find
a complete list of (minimal) forbidden induced subgraphs for probe cographs.
In the partitioned case, however, we have a characterisation in terms of five
forbidden induced subgraphs.

H1 H2 H3 H4 H5

Fig. 1. Forbidden subgraphs for partitioned probe cographs (black vertices probes,
white vertices non-probes)

Theorem 3. Let G = (P, N, E) be a partitioned graph with an independent set
N . Then the following statements are equivalent.

(i) G is a partitioned probe cograph;
(ii) In G, every P4 has two vertices, every P5 has three vertices, and every bull

has a mid-point in N ;
(iii) None of the graphs H1, . . . , H5 depicted in Fig. 1 is an induced subgraph in

G;
(iv) G is obtained from a cograph on the same vertex set by making N to a

clique;
(v) Each induced subgraph H of G with at least two vertices has two twins with

respect to N ∩ V (H).

Proof. Note that (ii) and (iii) are clearly equivalent. The rest follows imediately
from (the proof of) Theorem 2. ��

4 Recognizing Probe Cographs

In this section we give a linear time recognition algorithm for partitioned probe
cographs. As mentioned, the unpartitioned case can be reduced to the parti-
tioned case in linear time, probe cographs therefore can be recognized in linear
time.
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Cographs. Our recognition algorithm for partitioned probe cographs is based
on Algorithm 1 below for recognition of cographs due to Corneil at al. [12]. As
(the linear time bound of) Algorithm 1 is far from being obvious, we assume
that the readers are familiar with this algorithm. Note that we reformulated this
algorithm in comparison to [12] in order to make it more readable.

Algorithm 1. cograph-recognition [12] Given a graph G = (V, E) with
V = {v1, . . . , vn}, determine whether G is a cograph and construct the cotree T
for G if it is.
1: Create a new 1©-node R
2: if v1v2 ∈ E then
3: add v1, v2 as children of R
4: else
5: create a new 0©-node N with children v1, v2; add N as a child of R
6: for x ← v3, . . . , vn do
7: mark(x)
8: if all nodes of T are marked and unmarked then
9: add x as a child of R

10: continue with the next iteration of the for-loop
11: if all nodes of T are not marked then
12: if deg(R) = 1 then
13: add x as a child of the only child of R
14: else
15: create a new 1©-node R with one child (a new 0©-node) and two grand-

children: x and the old root
16: continue with the next iteration of the for-loop
17: u ← find-lowest

18: Let A denote the set of children of u that are marked and unmarked and B the
set of children of u that are not marked

19: if label(u) = 0 ∧ |A| = 1 then
20: if w ∈ A is a leaf then
21: add a new 1©-node in place of w and make w, x children of this node
22: else
23: add x as a new child of w
24: else if label(u) = 1 ∧ |B| = 1 then
25: if w ∈ B is a leaf then
26: add a new 0©-node in place of w and make w, x children of this node
27: else
28: add x as a new child of w
29: else
30: remove all elements of A from u and add them as children of a new node y

with label(y) = label(u)
31: if u is a 0©-node then
32: add a new 1©-node as a child of u; children of this new 1©-node are x, y.
33: else
34: remove u from its parent and add y in its place; add a new 0©-node as

a child of y; children of this new 0©-node are x, u.
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For a node x in the cotree, deg(x) returns the number of children in the cotree
of x, label(x) returns 0 if x is a 0©-node and 1 if x is a 1©-node. For the definition
of the procedures mark and find-lowest, we refer to [12] (but see below).
Note that the algorithm always creates a cotree with a 1©-node as the root; if G
is disconnected, the root will have just one single child, a 0©-node. Alg. 1 builds
the cotree for G incrementally. It starts with the cotree T for G[v1, v2] (line 1–5)
and then tries to add the other vertices to T one by one (the for-loop in line 6).

Assume T is the cotree for G′ = G[v1, . . . , vi] (thus, G′ is a cograph) and
x = vi+1. First, in line 7, information about the neighbours of x is propagated
up T by mark, using a marking scheme. Every node t in T can be in one
of three states: It is either ‘not marked’, or it is ‘marked’ or it is ‘marked’
and subsequently ‘unmarked’. If x is adjacent to all or no vertices in T , this is
enough to determine that G′ + x is a cograph and how x should be added to T
(line 8–16). Otherwise find-lowest is called. For find-lowest the following
properties hold:

Proposition 2. Let T be the cotree for the cograph G′. If G′+x is not a cograph
then find-lowest(x) will return an error. Otherwise a node u in T is returned.
Let A be the set of children of u that were marked and B the set of children that
were not marked. Then the following properties holds:

1. G′ + x is a cograph.
2. A, B are both non-empty.
3. A ∪ B ∪ {x} is a module in G′ + x.
4. x is adjacent to all vertices in the subtrees rooted at a node in A.
5. x is non-adjacent to all vertices in the subtrees rooted at a node in B.

If in the for-loop the current vertex x cannot be added to the tree, the call to
find-lowest will fail and the algorithm will terminate. Otherwise x will be
added in one of the following lines:

line 9 x is adjacent to all vertices in the cotree.
line 13,15 x is adjacent to no vertices in the cotree. x gets inserted in line 13

if the cotree represents a disconnected graph and in line 15 if it represents a
connected graph.

line 21,26 x is a twin of w; a true twin if u is a 0©-node, a false twin if u is a
1©-node.

line 23,28 Let M be the module under w. Every vertex outside M that is
adjacent (non-adjacent) to M is also adjacent (non-adjacent) to x and x is
adjacent to all vertices in M if w is a 1©-node and non-adjacent to all vertices
in M if w is a 0©-node.

line 30–34 x is adjacent to all vertices in A and non-adjacent to all vertices
in B. Other vertices have adjacencies to x as to A ∪ B (so A ∪ B ∪ x is a
module).

Note that the adjacencies between the vertices that are already in the cotree are
the same before and after adding x.
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x

a

a

x

c

y

bb

c

y

Fig. 2. Labeled H4 and H5

Recognizing partitioned probe cographs. We start with some observa-
tions concerning probe cographs and Algorithm 1: For a partitioned graph G =
(P, N, E) to be a probe cograph, it is necessary that G[P ] and for all x ∈ N :
G[P + x] are cographs. This is exemplified by the forbidden subgraphs H1, H2,
and H3 in Fig. 1. Assume that G[P +x] is a cograph for all x ∈ N and, moreover,
that we have constructed the cotree for G[P ]. Label the vertices of H4 and H5
as in Fig. 2.

If G contains an H4 as an induced subgraph, then we can add either x or
y to the cotree, but not both; see Fig. 3. x, y would be added in line 26–30 of
Algorithm 1 with A = {a, b}, B = {c} for x and A = {b, c}, B = {a} for y. The
problem here is that both adding x and adding y requires the introduction of a
new 0©-node in the cotree, but that the sets of children of these new vertices are
neither disjoint, nor is one contained in the other. Note that if a, b, c do not have a
common parent in the cotree then there is a probe p such that {a, b, c, p} together
with x or y contain an induced H2 or H3 in G. The case for H5 is symmetrical,
with the roles of 1©- and 0©-nodes in the cotree exchanged. Fortunately, all of
those cases can be handled by some modifications of cograph-recognition

(Algorithm 1). Our recognition algorithm for probe cographs is described by
Algorithm 2. (The sets universal, isolated, A(x), B(x) for each non-probe
x, twin(w) for each probe w, and module(w) for each internal node w of the
cotree T of G[P ] are initially empty. For the procedure mark and function
find-lowest see [12].)

Given G = (P, N, E), Algorithm 2 first builds a cotree T for G[P ]. This
succeeds if and only if G does not contain an induced H1. Then it tests (via
find-lowest) if, for each non-probe x ∈ N , G[P ]+x is a cograph. This succeeds
if and only if G does not contain an induced H2 or H3. In case G[P ] + x is a
cograph, it determines how x should be added to T , without actually doing
so (that is, T is the cotree of G[P ] throughout lines 5-26). Instead of adding

ba c

u
0

⇒
c

a b

x

u
0

1

0

and
a

y

b c

u
0

0

1

Fig. 3. Attempting to create a cotree for H4.
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x to the cotree, we save the following information (compare the discussion of
Algorithm 1; the line numbers refer to Algorithm 1):

line 9 x is adjacent to all probes: We add x to the set universal.
line 13,15 x is adjacent to no probe: We add x to the set isolated.
line 21,26 x is a twin of w: We add x to the set twin(w).
line 23,28 x is going to be a member of the module under w: We add x to the

set module(w).

Algorithm 2. probe-cograph-recognition Decide whether G = (P, N, E)
is a probe cograph and create the cotree T of a valid extension of G if it is.
1: Call cograph-recognition(G[P ])
2: if G[P ] is not a cograph then
3: return false and terminate
4: Let T be the cotree of G[P ] returned by cograph-recognition(G[P ])
5: for all x ∈ N do
6: mark(x)
7: if all nodes of T are marked and unmarked then
8: add x to universal

9: continue with the next iteration of the for-loop
10: if all nodes of T are not marked then
11: add x to isolated

12: continue with the next iteration of the for-loop
13: u ← find-lowest

14: Let A denote the set of children of u that are marked and unmarked and B the
set of children of u that are not marked

15: if label(u) = 0 ∧ |A| = 1 then
16: if w ∈ A is a leaf then
17: add x to twin(w)
18: else
19: add x to module(w)
20: else if label(u) = 1 ∧ |B| = 1 then
21: if w ∈ B is a leaf then
22: add x to twin(w)
23: else
24: add x to module(w)
25: else
26: u(x) ← u; A(x) ← A
27: for all nodes t in T do
28: if t is a 0©-node ( 1©-node) then
29: if the sets A(x) (B(x)) with u(x) = t are nested or disjoint then
30: add non-probes x to the cotree (see text)
31: else
32: return false and terminate
33: Add all other non-probes in universal, isolated, twin and module to the cotree

(see text).
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line 30–34 We save u, A as u(x), A(x). B needs not be saved as B(x) equals the
children of u(x) minus those in A(x). We are going to use this information
in the next step.

In line 30 of probe-cograph-recognition, we add the non-probes for line
30–34 of cograph-recognition appropriately. Let t be an internal 0©-node
( 1©-node). If i, j are non-probes with u(i) = u(j) = t then A(i) and A(j) (B(i)
and B(j)) are either disjoint or one is contained in the other:

Assume not, and let ta ∈ A(i) \ A(j), tb ∈ A(j) \ A(i) and tc ∈ A(i) ∩ A(j)
for t a 0©-node. Let a be a vertex in the subtree rooted at ta, b a vertex in the
subtree rooted at tb and c a vertex in the subtree rooted at tc. Then a, b, c, i, j
induce an H4. When t is a 1©-node, symmetrically an H5 is induced.

Thus, we can order the vertices x with u(x) = t into a rooted tree F such
that xi is a descendant of xj if and only if A(xi) ⊆ A(xj) (B(xi) ⊆ B(xj)).
Then we use F top-down to add the non-probes to T . If xi is a child of xj in F
with A(xi) ⊂ A(xj) we follow line 30–34 of Algorithm 1, but for t a 0©-node use
u(xi) := y(xj); see Fig. 4. If t is a 1©-node, then twin(u(xi)) and module(u(xi))
must be moved to y(xi). If A(xi) = A(xj) (B(xi) = B(xj)), then xi, xj are added
as children of the same 1©-node ( 0©-node). We see that the type ( 0©/ 1©) of the
least common ancestor of vertices already in the cotree does not get changed
and that the non-probes x get added so that the least common ancestor of x
and a probe p is a 0©-vertex if xp �∈ E and a 1©-vertex if xp ∈ E.

In line 33 of probe-cograph-recognition, we add the other non-probes to
the cotree as well: Let w be a probe with twin(w) non-empty. If the parent of
w is a 0©-node ( 1©-node), then we replace w by a new 1©-node ( 0©-node) with
children w and the vertices in twin(w). Let w be an internal node of the cotree
with module(w) non-empty. We add the vertices in module(w) as children
to w. Vertices in universal are added as children of the root R. Finally, if
isolated is non-empty, a new 0©-node R′ is created with children R and the
vertices in isolated; R′ is the new root of the cotree.

It is clear that adding non-probes in this way does not change the adjacencies
between vertices already in the cotree and that the non-probes then have the
correct adjacencies (compare Proposition 2).
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Fig. 4. Illustrating line 30 of Algorithm 2. Note that |A(xi)| > 1, |A(xj)| > 1 and
|A(xl)| > 1.
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Thus, if G = (P, N, E) is (H1, . . . , H5)-free, we created a cotree for a cograph
G′ = (P ∪ N, E′) such that for all probes p ∈ P and v ∈ P ∪ N , v �= p, pv ∈ E′

if and only if pv ∈ E. That is, G′ is a valid extension of G.

Theorem 4. Partitioned and unpartitioned probe cographs can be recognized in
linear time. Moreover, a valid extension of a given probe graph can be determined
in linear time, too.

Proof. By the previous discussion and by Theorem 3 (i) ⇔ (iii), Algorithm 2 cor-
rectly recognizes partitioned probe cographs. Concerning the time bound, we will
explain in the full version that line 30 is performed in time O(

∑

u(x)=t |A(x)|).
Then the for-loop at line 27 takes in total

∑

t O(
∑

u(x)=t |A(x)|) ≤ O(
∑

x∈N

|A(x)|) ≤ O(
∑

x∈N |NG(x)|) = O(|E(G)|) time. The other steps can be done in
linear time by linearity of Algorithm 1 and it follows that Algorithm 2 runs in
linear time.

By [5, Theorem 5], or [1, Satz 4.17], stating that recognition of unpartitioned
probe cographs can be reduced to the recognition of partitioned probe cographs
in linear time, recognition of unpartitioned probe cographs is then also linear.

��
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Abstract. Polygon-circle graphs (PC-graphs) are defined as intersec-
tion graphs of polygons inscribed into a circle, graphs of interval filaments
(IFA-graphs) are intersection graphs of curves with both endpoints on
prescribed line (filament), filaments above two disjoint intervals must
not intersect each other. Recognition of these classes has been a long
outstanding open problem. We prove that it is NP-complete to recognize
both classes.

1 Introduction

Throughout the whole article any graph will be a simple undirected finite graph,
that is, an ordered pair of vertices and edges G = (V, E), E ⊆

(

V
2

)

. The com-
plement of a graph means the edge-complement, i.e., co-G = (V,

(

V
2

)

\ E). For a
class of graphs C we define co-C = {co-G|G ∈ C}. Intersection graphs are graphs
with an intersection representation by a set-system: Each vertex is represented
by a set, two vertices are adjacent if and only if corresponding sets have non-
empty intersection. Any graph has some intersection representation [16], but
non-trivial and interesting results are established when only sets of special prop-
erties are considered. The class of graphs representable by arc-connected sets
in the (Euclidean) plane is the well-known class of STRING graphs [2,11,17]).
Many intersection-defined subclasses of STRING-graphs have been considered,
e.g., interval graphs (shortly INT-graphs, intersection graphs of intervals on
a line), circle graphs (intersection graphs of segments inscribed into a circle),
circular-arc graphs (intersection graphs of arcs of a circle) [19,16]. Intersection
graphs have applications, for example, in VLSI-circuit design, biology and even
in archeology. Some generally NP-hard problems can be solved efficiently when
the input graph is given with a representation. Therefore it is important to ask,
how difficult it is to find such a representation, or at least to decide, whether it
exists. This is what we call the recognition problem. For example, for STRING
graphs the recognition problem is known to be NP-complete ([17] and [11]) and
the membership in NP is quite non-trivial. Several classes (e.g., interval graphs,
circle graphs and circular-arc graphs) can be recognized in polynomial time. In
this article we solve the recognition problem for two classes for which it has long
been open.

A. Brandstädt, D. Kratsch, and H. Müller (Eds.): WG 2007, LNCS 4769, pp. 238–247, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Polygon-circle graphs, or shortly PC-graphs, are intersection graphs of convex
polygons inscribed into a circle. Polygon-circle graphs are interesting because
they form a common generalization of several other intersection classes, e.g.,
circle graphs, circular-arc graphs, chordal graphs (all polynomially recognizable
[20,3,15]). Maximum clique, maximum independent set and coloring by fixed
number of colors is polynomially solvable for circular-arc graphs, coloring is NP-
hard for circular-arc graphs and circle graphs, while maximum clique and inde-
pendent set remain polynomially solvable even for IFA-graphs (even in weighted
case [5]).

Koebe in [14] presented many claims that he believed to imply polynomial
recognition algorithm for PC-graphs, but this algorithm was never published.
This is not surprising as now we show polynomial reduction showing
NP-completeness of this problem.

Interval-filament graphs, shortly IFA-graphs, are defined as intersection graphs
of filaments above a given line in a plane. Filaments are curves with endpoints
on the given line. Each filament defines between endpoints on the line an in-
terval, filaments belonging to disjoint intervals must not intersect each other.
IFA-graphs were defined by Gavril [5] and characterized by mixed property (see
below) as complements of co-INT-mixed graphs and they were equivalently de-
scribed as caterpilar-overlap graphs [8]. Despite of the structural characterization
the recognition has been open since. IFA-graphs contain PC-graphs and there-
fore Gavril’s polynomial algorithm for the problem of the maximum weighted
clique and maximum weighted independent set [5] immediately yields polynomial
algorithm for PC-graphs.

If we consider intervals on the line (which are special cases of filaments),
we obtain very well known class of interval graphs. A partial ordering ≤ on
a set {a1, a2, . . . , an} is represented by a graph G = ({a1, a2, . . . , an}, {aiaj |i �=
j∧(ai ≤ aj)∨(aj ≤ ai)}). A graph is called a comparability graph if it represents
some partial ordering on some set. For a class C of graphs a graph G is called
C-mixed if there exist H = (V, E) ∈ C and a comparability graph I = (V, F )
such that G = (V, E ∪ F ). For any triple of vertices a, b, c in such a graph, the
following must hold. If ab ∈ E and b ≤ c, then ac ∈ E. Gavril [5] showed that
co-IFA-graphs are co-interval-mixed graphs (i.e., for any IFA-graph, there exists
an interval-completion formed by the edges of comparability graph) which yields
NP-membership for the recognition problem.

2 PC-Graphs

2.1 Preliminaries

First we show that the recognition problem for PC-graphs is in NP (as for several
classes, like segment-graphs or CONV-graphs it is not known whether respective
recognition problem is in NP [10]). We use the notion of alternating sequence,
which was first introduced by Bouchet [1] to recognize circle-graphs:

Definition 1. A sequence S = S1, ..., Sm of symbols {v1, ...vn} is called an al-
ternating sequence representing graph G = ({v1, ...vn}, E) if ∀uv∈{v1,...vn} in S
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symbols u and v alternate (i.e., S contains either a subsequence u...v...u...v or
v...u...v...u) if and only if uv ∈ E.

It is a well-known fact that G is a PC-graph if and only if it has an alternating
representation [9]. Moreover, for a vertex of degree d ≥ 2, at most d occurences
are sufficient, for vertices of degree at most one two occurences are sufficient [13].

For a vertex v we use Pv to denote the polygon representing v in a PC-
representation.

Lemma 1. The recognition problem for PC-graphs is in NP.

Proof. We guess an alternating sequence (which is polynomially large with
respect to the size of the graph) and verify that exactly those pairs forming an
edge alternate.

Definition 2. The corners of any polygon R divides the bounding circle into
circular arcs.

– The regions bounded by those arcs and the chords between their endpoints
are called R-segments.

– If P, Q, R are disjoint polygons (with the same bounding circle) and Q lies
in a different P -segment than R, we say that Q is blocked from R by P .

– For disjoint polygons P and Q, the union of the P -segments not containing
Q is called the place under P with respect to Q.

– A set A of polygons is said to lie around the circle if for no triple of disjoint
polygons P, Q, R ∈ A, the polygon Q is blocked by R from P .

– We say that a polygon P is visible from a point x if there exists a ray starting
in x that intersects P in a point y such that no point of the segment xy is
contained in any other polygon of the representation.

3-SAT is a well-known NP-complete problem. We use a special case, which is still
NP-complete [18], as it is equivalent to bicolorability of 3-uniform hypergraph
[4]:

Definition 3. NAE-SAT (or E3-PURE-NAE-SAT) is the problem of whether a
formula φ in conjunctive normal form (i.e., conjunction of disjunctions) having
in each clause exactly 3 literals and having all literals in positive form (i.e.,
without negation) has an evaluation of variables such that in each clause at least
one literal is true and at least one in false.

2.2 The Reduction

Now we reduce the problem NAE-SAT to the recognition of PC-graphs. Given
formula φ, we define a graph G as follows: We start by two non-neighboring
vertices e1 and e2. Then we order (and number) variables v1, v2, ..., vn of φ.
Each variable v contributes to the graph by two important vertices v and v̄.
Technical details of the construction force us to represent each vi and v̄i with
polygons which lie in the place only under Pe1 with respect to Pe2 or under Pe2
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Fig. 1. Picture a) shows how vertices representing literals should be distributed around
the circle, b) and c) describe a representation of satisfied clauses, d) is an unsatisfied
clause – note that in case d) polygons representing the clause must intersect each other.
All other possibilities are equivalent to one of those depicted.

with respect to Pe1 (i.e., for no i neither Pe1 , Pe2 , Pvi nor Pe1 , Pe2 , Pv̄i lie around
the circle). When v gets represented in the place under Pe1 and v̄ under Pe2 , v is
assigned TRUE, if v is represented under Pe2 and v̄ under Pe1 , v is FALSE, all
other possible placements get obstructed (by not yet described constructions).
Under Pe1 and Pe2 (with respect to each other) vertices vi and v̄i get represented,
in the ordering of increasing index as depicted in the Figure 1 a) where instead of
Pe1 and Pe2 we show a line separating them. We represent each clause (v1, v2, v3)
by two mutually non-adjacent vertices q1 and q2, where q1 is adjacent to v̄1, v2
and v̄3, and q2 to v1 and v3.

Note that under assumptions of last paragraph the ”clause”-vertices (q1, q2)
can be properly represented if and only if neither all three of v1, v2, v3 are
assigned TRUE nor (all three) FALSE. These ideas are demonstrated in the
Figure 1.

Now we describe technical the part of the reduction. We give a description of
what should be done for three consecutive variables (with respect to the indices
of variables) A, B and C and for a clause Q. Variable B contributes 16 vertices:
a1, ...a5, b1, ...b5, c1, ...c4, r1, r2. These vertices behave as in the Figure 2. Variable
A contributes 16 vertices with the same labels as for B, but with a prime. These
two variables share four vertices in the following way: a′

1 = a4, a
′
2 = a5, b

′
4 = b1

and b′5 = b2. In the same way C contributes 16 vertices with double-primes,
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a1
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b2

a3

b3

a4

b4

a5

b5

c1 c2 c3 c4

e2

e1

r1

r2

x1

x2

x4

x3

Fig. 2. Variable gadget. Vertices a1, a2, b4, b5 and a5, a4, b2, b1 are shared by gadgets
with index larger or smaller by one, respectively. Dashed and dotted edges are valid
only for gadgets belonging to the first or the last variable, respectively.

and so: b′′1 = b4, b
′′
2 = b5, a

′′
4 = a1 and a′′

5 = a2. All c- and r- vertices of distinct
variables are adjacent. We add a 6-cycle e1, x1, x2, e2, x3, x4. We make the vertex
e1 adjacent to all c-, r- and a-vertices except all a3’s and the vertex e2 adjacent
to all c-, r- and b-vertices except b3’s. When representing variable v1, we connect
its copy of a1 to x1 and b5 to x4, similarly for the last variable we connect its b1
to x2 and a5 to x3.

For each clause Q containing literals l1, l2, l3 we add two nonadjacent vertices
q1 and q2 make both adjacent to all c- and r-vertices, to e1, e2 and to all vertices
representing the other clauses. Then we make q1 adjacent with the b3-vertices of
the gadgets representing variables l1 and l3 and to the a3-vertex of the gadget
representing l2 (note that φ has only positive occurences). Finally we connect q2
with the a3-vertices of the gadgets representing l1 and l3 (not for l2, it is okay
to do so, but more convenient not to).

Note that the a3- and b3-vertices of respective variables are exactly the vertices
v and v̄ introduced in the idea of the reduction. When we prove that a3’s and
b3’s appear around the circle in desired ordering (i.e., such that there are two
disjoint half-circles in each of which one of a3 and b3 corresponding to each
variable vi occur, and do so in order of increasing index of the corresponding
vi), we are done. This gets proven by following lemma with easy consequence
that the variable-gadget must be represented as depicted in the Figure 3.

Lemma 2. When representing one fixed variable gadget, polygons representing
its a1, a2, a4, a5, b5, b4, b2 and b1 appear around the circle and, moreover, in this
ordering.
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e1

e2

a1

b1

c1
a2

b2

c2a3

b3

c3a4

b4

c4
a5

b5

c1

c2
c3

c4

of vi

a1

a2

(∗)

c1c2
of vi+1

Fig. 3. Picture on the left describes the unique possibility how to represent the variable-
gadget (up to switching a3 and b3), picture in the middle describes how representants
of neighboring variables are represented and share vertices, polygon (*) represents a5

of vi and simultaneously a2 of vi+1, picture on the right sketches representation of
c-vertices belonging to three consecutive variables.

Note that sharing vertices with ”neighboring” gadgets propagates this orienta-
tion to all other variable-gadgets. Proof in full version.

Lemma 3. The constructed graph without clause-vertices can be represented only
in such a way that polygons representing the a3’s and b3’s appear around the circle,
and consecutive literals (around the circle) have increasing indices (mod n).

Proof. Corollary of Lemma 2.
Now we know that unsatisfiable formula cannot be represented (because poly-

gons representing corresponding vertices must intersect each other although they
represent non-adjacent vertices). Thus we have to show:

Lemma 4. For a satisfiable formula φ, it is possible to represent the graph ob-
tained from our construction.

Proof. After representing the variable-gadgets as depicted in the Figure 3 for
each clause we add two vertices q1 (having three neighbors among the a3’s and
b3’s) and q2 (having two such neighbors) in such a way to intersect relevant
Pa3 ’s and Pb3 ’s and extend them to correctly intersect all auxiliary polygons.
We choose one variable vi of l1 and l3 which is the ”endvariable” for Pq1 (i.e.,
which is not blocked by Pq1 from Pa3 ’s of l1 and l3)1. We extend Pq1 and Pq2 to
cover almost half of the circle (we proceed for Pq1 , Pq2 is similar): Pq1 has three
corners intersecting relevant Pa3 and Pb3 ’s. We add a corner intersecting Pc2 of
vi−1. Now except Pc3 and Pc4 of vi−1 and vi we are intersecting exactly what we
should. So we add a corner under Pc4 of vi−1 with respect to Px1 and Px3 and
simultaneously Pc1 of vi and we are done.

Lemma 4 finishes the proof of the theorem:
1 Formally when exploring this blocking we consider Pq1 restricted not to intersect

Pb3 of l1 and l3 because blocking is defined only for disjoint polygons.
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Theorem 1. It is NP-complete to recognize whether a graph G has a PC-
representation.

3 Graphs of Interval Filaments

3.1 Technical Notions

Definition 4. Let G be an interval-filament graph G and R be its representa-
tion. For each vertex v ∈ V (G) we denote by Fv the filament corresponding to v
and by Iv the underlying interval (of the filament).

We are interested in the ”topological” position for three mutually nonintersecting
filaments. Note that two principal positions are that either from each filament
either both other are visible or neither are. This visibility can be defined in the
following technical way:

Definition 5. For a triple of non-intersecting filaments Fa, Fb and Fc we say
that Fa is covered by Fb against Fc if either Ia ⊂ Ib ⊂ Ic (or the reverse) or
Ia ⊂ Ib and Ib ∩ Ic = ∅ (or the reverse). For a set F of filaments we say this set
lies consecutively on the base-line if Fa is not covered by Fb against Fc for any
triple Fa, Fb, Fc ∈ F .

Theorem 2. It is NP-complete to decide whether a given graph is an IFA-graph.

The theorem is proven in two parts. First it is necessary to show that the recog-
nition problem is in NP. This was already proven in [6]:

Theorem 3. G is IFA-graph if and only if it is co-(co-INT-mixed)-graph.

Corollary 1. The recognition problem of IFA-graphs is in NP.

Proof. We guess an appropriate INT-graph H (with an interval representation),
an appropriate partial-ordering P of vertices and check correctness.

3.2 The Reduction

For the reduction we use almost the same graph as for PC-graphs and the same
basic ideas. We just subdivide each a- and b-vertex into two new vertices for ai

named fi, gi and for bi we name them hi and ji (to obtain 6-cycles instead of
4-cycles in the variable-gadget). New variable-gadget is depicted in the Figure
4. The e1 is adjacent to all fi’s and gi’s again, except f3’s and g3’s, and analo-
gously the e2 is adjacent to all h- and j-vertices. The clause gadget is created
analogously as for PC-graphs, both new polygons Pf3 and Pg3 (or Ph3 and Pj3)
are intersected instead of Pa3 ’s (or Pb3 ’s, respectively). Note that for a satisfiable
formula this graph is a PC-graph. Now we show that for an unsatisfiable for-
mula such a graph does not even have an IFA-representat. The argumentation
is analogous to the case of PC-graphs, there are just more cases to analyze.

Observation: Filaments representing f - and j- (and similarly g- and h-) ver-
tices lie consecutively on the base-line.

We generalize the notion of consecutive occurences to circularly consecutive:
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Fig. 4. The variable-gadget for graphs of interval filaments is similar to the gadget for
PC-graphs, only C4’s are subdivided into C6’s. Again dashed lines apply only to the
first variable while the dotted to the last.

Definition 6. For a set of disjoint filaments F0, ...Fn lying consecutively on the
base-line we say that this set is circularly consecutive if there exists i ∈ {0, ..., n}
such that for all j �= i interval Ij preceeds interval Ij+1 (i.e., its right endpoint
is to the left of the left endpoint of Ij+1) where j + 1 is considered modulo n + 1
and Ii either contains all other intervals or Ii preceeds Ii+1.

Lemma 5. To represent a variable-gadget up to symmetry the c-vertices must
occur as depicted in the Figure 5.
Proof. By simple case analysis.

We prove following Lemma similar to Lemma 2:

Fig. 5. These are (up to symmetries) only possibilities how to represent vertices
c1, c2, c3 and c4 of the variable gadget

Lemma 6. Filaments representing f1, f2, f4, f5, j5, j4, j2, j1 are circularly con-
secutive.
Proof. By case-analysis according to the Figure 5.

This Lemma finishes the proof of NP-hardness of IFA-graphs.
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4 Conclusion

As the construction for IFA-graphs produces either a PC-graph, or a graph that
is not an IFA-graph, we proved:

Theorem 4. No polynomially recognizable class can be sandwiched between PC-
graphs and IFA-graphs (i.e., C such that PC ⊆ C ⊆ IFA), unless P=NP.

As open problems remain the recognition problem of other classes of filament
graphs introduced by Gavril [5,7] (circular-, subtree-, 2dim-interval-...). These
classes are interesting, e.g., due to existence of polynomial algorithm for the
maximum weighted clique. As well it remains open whether IFA-graphs can be
recognized in polynomial time for graphs of large girth. Recently we have proven
that PC-graphs with girth at least 5 can be polynomially, while, e.g., for segment
graphs the recognition problem remains hard even with arbitrarily large girth
[12].
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Abstract. A circular-arc model M = (C, A) is a circle C together with
a collection A of arcs of C. If no arc is contained in any other then M is
a proper circular-arc model, if every arc has the same length then M is
a unit circular-arc model and if A satisfies the Helly Property then M is
a Helly circular-arc model. A (proper) (unit) (Helly) circular-arc graph
is the intersection graph of the arcs of a (proper) (Helly) circular-arc
model. Circular-arc graphs and their subclasses have been the object of
a great deal of attention in the literature. Linear time recognition al-
gorithms have been described both for the general class and for some
of its subclasses. In this article we study the circular-arc graphs which
admit a model which is simultaneously proper and Helly. We describe
characterizations for this class, including one by forbidden induced sub-
graphs. These characterizations lead to linear time certifying algorithms
for recognizing such graphs. Furthermore, we extend the results to graphs
which admit a model which is simultaneously unit and Helly, also leading
to characterizations and a linear time certifying algorithm.

Keywords: algorithms, forbidden subgraphs, Helly circular-arc graphs,
proper circular-arc graphs, unit circular-arc graphs.

1 Introduction

Circular-arc (CA) graphs and its subclasses are interesting families of graphs
that have been receiving much of attention recently. The most common sub-
classes of circular-arc graphs [1,3,12] are proper circular-arc (PCA) graphs, unit
circular-arc (UCA) graphs and Helly circular-arc (HCA) graphs. The classes of
PCA and UCA graphs have been characterized by families of (infinite) forbidden
subgraphs [14], and for HCA graphs there is a characterization by forbidden CA
graphs [4]. Each of the graphs of the mentioned classes is the intersection graph
of a collection of arcs of a circle. The circle and the collection of arcs form a
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model for the corresponding graph. The model is called CA,PCA,UCA or HCA,
according to whether the corresponding graph is CA,PCA,UCA or HCA. For
each of the four classes of graphs (CA, PCA, UCA, HCA) there is a linear time
recognition algorithm (see [6,9,10] for CA, [2,5] for PCA, [5,7] for UCA and [4]
for HCA).

In this paper, we study the class of circular-arc graphs which admit a model
which is simultaneously PCA and HCA. We call these graphs (models) as proper
Helly circular-arc graphs (models). Clearly, such a class of graphs is contained in
the intersection of the classes of PCA and HCA graphs. However, the contain-
ment is proper. Similarly, we define UHCA graphs as those admitting a model
which is simultaneously UCA and HCA. We describe characterizations for the
classes of PHCA and UHCA graphs, including a characterization by forbidden
subgraphs. The characterizations lead to linear time algorithms for recognizing
PHCA and UHCA graphs. Besides, we also describe how to obtain certificates,
both positive and negative, and authenticate them in linear time.

As a motivation for this work, besides its theoretical interest, we mention that
PCA and HCA are two classes of graphs, which behave differently in various
aspects. For instance, PCA graphs can be efficiently colored, while problems
involving cliques tend to be easier for HCA graphs. For instance, interval graphs
are exactly those admitting a clique matrix having the consecutive ones property
on the columns. By extending the consecutive ones property to the circular
consecutive ones property leads to a broader class, which is exactly the HCA
graphs. In this context, arises the problem of characterizing the clique graphs of
HCA graphs. The latter class is related to the PHCA graphs [8].

Let G be a graph, V (G) and E(G) its sets of vertices and edges, respectively,
|V (G)| = n and |E(G)| = m. For v ∈ V (G), denote by N(v) the set of vertices
adjacent to v, and N [v] = N(v) ∪ {v}. A vertex v of G is universal if N [v] =
V (G). Two vertices v and w are twins in G if N [v] = N [w]. A clique is a
maximal subset of pairwise adjacent vertices.

A circular-arc (CA) model M is a pair (C, A), where C is a circle and A is
a collection of arcs of C. When traversing the circle C, we will always choose the
clockwise direction, unless explicitly stated. If s, t are points of C, write (s, t)
to mean the arc of C defined by traversing the circle from s to t. Call s, t the
extremes of (s, t), while s is the start point and t the end point of the arc.
For Ai ∈ A, write Ai = (si, ti) and Ai = (ti, si). The extremes of A are those
of all arcs Ai ∈ A. An s-sequence (t-sequence) is a maximal sequence of start
points (end points) of A, in a traversal of C. Without loss of generality, all arcs
of C are considered as open arcs, no two extremes of distinct arcs of A coincide
and no single arc entirely covers C. We will say that ε > 0 is small enough if ε
is smaller than the minimum arc distance between two consecutive extremes of
A.

When no arc of A contains any other, (C, A) is a proper circular-arc (PCA)
model, while when every arc has the same length it is called unit circular-arc
(UCA) model. When every set of pairwise intersecting arcs share a common
point, (C, A) is called a Helly circular-arc (HCA) model. If no two arcs of A
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cover C then the model is called normal. A PHCA (UHCA) model is one which
is both HCA and PCA (UCA). Finally, a (proper) interval model is a (proper)
CA model where

⋃

A∈A A �= C.
A CA (PCA) (UCA) (HCA) (PHCA) (UHCA) graph is the intersection graph

of a CA (PCA) (UCA) (HCA) (PHCA) (UHCA) model. We may use the same
terminology used for vertices when talking about arcs. For example, we say an
arc in a CA model is universal when its corresponding vertex in the intersection
graph is universal. Similarly, a connected model is one whose intersection graph
is connected. Say that two CA models are equivalent when they have the same
intersection graph. If M is a CA model, denote by M1 a model obtained from
M by removing all its universal arcs, if existing, except precisely one. Also,
M0 represents the model where all universal arcs have been removed. Clearly,
if M has no universal arcs then M = M1 = M0, while if M contains exactly
one universal arc M = M1. In an HCA graph, each clique Q ⊆ V (G) can be
represented by a clique-point q ∈ C, which is a point of the circle common to
all those arcs of A, which correspond to the vertices of Q.

2 Preliminaries

In this section we present some simple observations and basic propositions, that
we employ throughout the article.

Lemma 1. Let v, w be two twin vertices in a graph G. Then G is a PCA (UCA)
(HCA) (proper interval) graph if and only if G \ {v} is a PCA (UCA) (HCA)
(proper interval) graph. Moreover G has a normal PCA (UCA) (HCA) model if
and only if G \ {v} also has a normal PCA (UCA) (HCA) model.

Proof. ⇐=) Let M = (C, A) be a PCA (UCA) (HCA) (proper interval) model
of H \ {v} and Ai ∈ A be the arc corresponding to w. It is easy to see that
M′ = (C, A ∪ {(si + ε, ti + ε)}) is a PCA (UCA) (HCA) (proper interval) model
of H , for every small enough ε. Moreover, if M is normal then we obtain that
M′ is normal. The converse is clear. ��

Lemma 2. If G is a PCA graph with at most one universal vertex then every
PCA model of it is normal.

Proof. If two arcs cover the circle of a PCA model then they must be both
universal, thus the graph has more than one universal vertex. ��

Theorem 1. [4] A circular-arc model (C, A) is HCA if and only if

(i) if three arcs of A cover C then two of them also cover it, and
(ii) the intersection graph of A is chordal.

Corollary 1. If a normal PCA model (C, A) is not HCA then three arcs of A
cover C.
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Proof. On the contrary, suppose that no three arcs of A cover C. Then, by
Theorem 1, the intersection graph of A = {A : A ∈ A}) has a hole v1, . . . , vk for
some k ≥ 4. Thus, the arcs A1, A3 ∈ A corresponding to vertices v1 and v3 do
not intersect and therefore A1, A3 are arcs of A that cover C, contradicting the
fact that (C, A) is normal. ��

3 The Characterizations

In this section, we describe characterizations for PHCA graphs including a char-
acterization by forbidden subgraphs. The forbidden subgraphs for a PCA graph
to be a PHCA graph are the 4-wheel, denoted by W4 and depicted in Figure 1
and the 3-sun, which appears in Figure 2.

(a) HCA model (b) UCA model (c) Graph

Fig. 1. HCA and PCA models of W4

(a) HCA model (b) PCA model (c) Graph

Fig. 2. HCA and PCA models of the 3-sun

Theorem 2. Let G be a PCA graph and M be a PCA normal model of it. The
following affirmatives are equivalent:

(i) M is equivalent to a PHCA model.
(ii) M contains no 4-wheels nor 3-suns, as submodels.
(iii) M1 is HCA or M0 is an interval model.
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Proof. (i) =⇒ (ii): By hypothesis, M is equivalent to a PHCA model of G.
We know that a PCA model and a HCA model both exist for W4 (Figure 1).
However, we show that no PHCA model exists for W4. Every HCA model for
W4 contains four clique points, such that the universal arc in the submodel
corresponding to W4 covers these four points, while each of the other arcs of
the submodel covers exactly two of them. Consequently, no HCA model can be
normal. By Theorem 1, the latter implies that whenever M is equivalent to a
PHCA model, M does not contain a submodel of W4. The proof for the 3-sun
is similar.

(ii) =⇒ (iii): Let M be a normal PCA model, containing no submodels of W4s
nor 3-suns. Suppose M1 is not an HCA model. Since M1 is also a PCA normal
model, Corollary 1 implies that M1 contains three arcs A1, A2, A3 covering C.
By Lemma 2 no two arcs cover C, thus we may assume that in a traversal of C
the order in which the extremes points of these arcs appear is s1, t3, s2, t1, s3, t2.
First, we prove that one of the above three arcs must be universal. Suppose the
contrary. Then there exist arcs Bi, such that Bi does intersect Ai, for i ∈ {1, 2, 3}.
However, since (C, A) is a proper model, it follows that Bi intersects Aj , Ak for
j, k ∈ {1, 2, 3} \ {i}. The latter leads to a contradiction because the intersection
graph of {Ai, Bi}i∈{1,2,3} is a 3-sun, when B1, B2, B3 are pairwise disjoint, or
otherwise it contains a W4. Consequently, one of A1, A2, A3, say A1, is a universal
arc. Without loss of generality, we may assume that A1 is the universal arc of
M1.

Next, we examine arc A1 in M1. Traverse (s1, t1) in the clockwise direction.
We will prove that no start point sl ∈ A1 can precede an end point tr ∈ A1.
To obtain a contradiction for this fact, assume the contrary and discuss the
following alternatives.

Case 1 : Ar = A3
In this situation, Al, A2, A3 are three arcs covering C. Because A1 is the
unique universal arc of M1, we know that Al, A2, A3 are not universal.
Consequently, as above, M1 contains a W4 or a 3-sun, a contradiction
(Figure 3(a))

Case 2 : Al = A2
Similar to Case 1.

Case 3 : Ar �= A3 and Al �= A2
By Cases 1 and 2, above, it suffices to examine the situation where
sl, tr ∈ (t3, s2). Suppose Al ∩ A3 = Ar ∩ A2 = ∅. In this case, the
arcs A1, A2, A3, Al, Ar form a forbidden W4, impossible (Figure 3(b)).
Alternatively, let Al ∩ A3 �= ∅. Then the arcs A3, Al, Ar cover the circle
and none of them is the universal arc A1, an impossibility (Figure 3(c)).
The situation Ar ∩ A2 �= ∅ is similar.

By the above cases, we conclude that all end points must precede the start
points in (s1, t1). Let tlast and sfirst be the last end point and the first start
point inside (s1, t1), respectively. Taking into account that A1 is universal, we
conclude that any point of the arc (tlast, sfirst) ⊂ A1 of C can not be contained
in any arc of A except A1. Hence M0 = M1 − {A1} is an interval model.
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(a) (b) (c)

Fig. 3. Theorem 2

(iii) =⇒ (i): Suppose M1 is a HCA model. By Lemma 1, we can include
in the model all the universal arcs that have been possibly removed from it,
obtaining M as both a PCA and HCA model. Then M is a PHCA model and
G a PHCA graph.

Next, suppose M0 is an interval model. Since M0 is a PCA model, it is in
fact a proper interval model. The extreme points of M0 form a linear ordering.
If M0 = M there is nothing to prove. Otherwise, examine the alternatives.

Case 1 : M0 is connected
Let tl be the first end point and sr the last start point in the ordering of
the extreme points of M0. Then insert the arc (tl − ε, sr + ε), for small
enough ε. It follows that such an arc must be universal and the model
still proper, because M is so. In addition, include the possibly remaining
universal arcs, as in Lemma 1. Hence M is a PHCA model.

Case 2 : M0 has two connected components
Traversing C in the clockwise direction, let tl be the first end point in
the first of the connected components, and sr the last start point in the
second of the components. Then include the arc (sr + ε, tl − ε), for small
enough ε. The new model is equivalent to M1. By Lemma 1, include the
remaining universal arcs. Therefore M is equivalent to a PHCA model,
i.e. G is a PHCA graph.

Case 3 : M0 has more than two connected components
This case can not occur, as M would not be a PCA model.

The proof is complete. ��

4 The Algorithms

The characterizations described in the last section lead directly to an algorithm
for recognizing PHCA graphs. Let G be a given graph. The algorithm answers
YES, if G is a PHCA graph, and NO otherwise.The formulation is as follows.
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1. Verify if G is a PCA graph, using algorithm [2] or [5]. If affirmative, let M
be the PCA model given by the algorithm; otherwise answer NO.

2. Transform M into a normal model M′, using algorithm [5] or [7].
3. Compute M′

1 and M′
0, from M .

4. Verify if M′
1 contains three arcs which cover the circle. If negative, answer

YES.
5. Verify if M0 is an interval model. If affirmative, answer YES; otherwise

answer NO.

The correctness of the algorithm follows from Theorems 1 and 2, Lemma 1 and
Corollary 1. We employ the equivalence (i) ⇐⇒ (iii) of Theorem 2. However,
the check of whether the model M′

1 is HCA is replaced by the simpler check of
whether M′

1 contains three arcs covering the circle, according to Corollary 1.
Next, we discuss the complexity of the algorithm. Step 1 requires O(n + m)

time [2], [5]. All the remaining steps can be implemented in O(n) time, as follows.
The construction of normal models can be done in O(n) time, using algorithms
[5] or [7]. In order to implement Step 3, we need to find the set of universal arcs
of M′. Such a construction can be done easily, by observing that in a proper
normal model, any arc Ai is universal precisely when it contains exactly one of
the extremes of each of the other arcs of A. Consequently, to check whether Ai

is universal, it suffices to check whether the n-th extreme point after si, in the
ordering, is the end point ti. This can be done in constant time, for each Ai,
hence in overall O(n) time. Step 4 can be implemented in time O(n), also in a
simple manner, as follows. For any arc Ai ∈ A, denote by PREV (Ai) the arc
of A whose start point is closest to the end point of Ai, in the counterclock-
wise direction. Let t1, . . . , tk be a t-sequence of a set of arcs A1, . . . , Ak. Clearly,
PREV (Ai) = PREV (A1) for every 1 ≤ i ≤ k. Therefore, by a simple examina-
tion of the t-sequences, we can find PREV (Ai) for every arc Ai in O(n) time.
If A1 covers C with two other arcs, then Ai, PREV (Ai), PREV (PREV (Ai))
must cover C because the model is proper. Thus, it is enough to check if
Ai, PREV (Ai), PREV (PREV (Ai)) cover the circle for every 1 ≤ i ≤ n, which
can be done in O(n) time. Finally, for Step 5, we need to verify whether M′

0 is
an interval model, which can be easily checked in O(n) time.

The above algorithm produces certificates, as a by-product. When the algo-
rithm answers YES, we exhibit a PHCA model for the graph, while in the NO
answer, we show either a forbidden subgraph or a corresponding argument for
the graph not to be PHCA.

The YES answers appear in Steps 4 and 5. The certificate corresponding to
Step 4 is just the model M′, constructed in Step 2. For obtaining the YES
certificate relative to Step 5, we refer to the proof of Theorem 2, in particular,
the Case 2 of the implication (iii) =⇒ (i). In this situation, M′

1 contains three
arcs covering the circle, but M′

0 is a disconnected interval model, formed by
two connected components. To obtain the required model, we include in M′

0
the arc (sr + ε, tl − ε), where sr is the last start point in the second connected
component of M′

0, while tl is the first end point in the first component. Such
a model contains exactly one universal arc. Finally, using Lemma 1, include
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the possibly remaining universal arcs that have been removed in Step 3. The
model so obtained is a PHCA model for G. The complexity for producing such
certificates is O(n).

Next, we discuss the authentication of the YES certificates. Denote by M′′

the certificate obtained by the algorithm, which we are required to authenticate,
as a PHCA model of the input graph G. That is, we ought to verify that M′′

is a model for G and that M′′ is proper, normal and Helly. The first task is
simple, just compare the adjacencies of the vertices of G with the intersections
of the arcs of M′′. This requires O(n + m) time. The remaining authentications
involve only operations on the arcs of M′′ and can be done in O(n + m) time,
as below described.

We employ an observation that a model M′′ is simultaneously proper and
normal if and only if no arc Ai of it contains both extremes of some other arc
Aj �= Ai. This observation leads to an algorithm where we traverse each arc Ai

of M′′ in the order i = 1, . . . , n, and if we detect both extremes of a same arc
during the traversal of Ai, the algorithm reports the certificate to be false and
stops. After traversing the last arc An it authenticates M′′ as being proper and
normal. Consequently, the authentication for the model to be proper and normal
can be easily implemented in O(n + m) time. Finally, for checking whether M′′

is Helly, we apply Corollary 1 and just confirm that M′′ does not contain three
arcs covering the circle. With this purpose, we run Step 4 of the Algorithm,
terminating within O(n) time.

The NO answers are in Steps 1 and 5. The negative answer in Step 1 occurs
when G is not a PCA graph. A certificate of this fact is given by algorithm
[5]. The task is divided into two cases. If G is co-bipartite then [5] employs
the characterization proved in [13] and exhibits a forbidden subgraph for a co-
bipartite graph to be a PCA graph. When G is not co-bipartite, the certificate
obtained is that for a matrix not to have the consecutive ones property in its
columns. Such a certificate is given by the algorithm [11]. In any of the cases, the
certificates can be obtained in O(n + m) time. Finally, the NO answer in Step
5 corresponds to a certificate where we exhibit a forbidden subgraph for a PCA
graph to be PHCA. According to Theorem 2, such a subgraph is either a W4 or a
3-sun, and can be constructed as follows. Let A1, A2, A3 be the three arcs which
cover the circle, obtained in Step 4. If none of these arcs is universal then by
Theorem 2, we know that there are three arcs B1, B2, B3, such that Bi intersects
Aj and not Ai, for all 1 ≤ i �= j ≤ 3. Then the arcs A1, A2, A3, B1, B2, B3 either
form a 3-sun or contain a W4. Finally, if one among A1, A2, A3, say A1, is a
universal arc then there are arcs Al, Ar, such that sl precedes tr in A1. In this
situation, A1, A2, A3, Al, Ar form a forbidden W4. There is no difficulty to obtain
such certificates in O(n) time.

Finally, we discuss the authentication of the NO certificates. The one obtained
in Step 1 is given by algorithm [5] and can be authenticated in O(n) time [5].
The NO certificate constructed in Step 5 is one of the forbidden subgraphs W4
or 3-sun. They can be easily authenticated in O(n) time, as being an induced
subgraph of G.
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5 Unit Helly Circular-Arc Graphs

The characterization of PHCA graphs, described in Section 3, can be extended
so as to characterize UHCA graphs. The formulation is below presented. The
proof is similar to that of Theorem 2.

Theorem 3. Let G be a UCA graph and M be a UCA normal model of it. The
following affirmatives are equivalent:

(i) M is equivalent to a UHCA model.
(ii) M contains no 4-wheels, as submodels.
(iii) M1 is HCA or M0 is an interval model.

The above characterization, together with Lemma 1 and Corollary 1, lead to a
linear time algorithm for recognizing UHCA graphs and exhibiting certificates.
The algorithm is similar to that for PHCA graphs, except that we employ algo-
rithms [5] or [7] in Step 1. The positive certificate is a UHCA model and can be
obtained by algorithm [7], whereas the negative certificate of Step 1 is obtained
by [5].

6 Conclusions

We have described characterizations and recognition algorithms for PHCA and
UHCA graphs. The characterizations imply a complete family of forbidden sub-
graphs for these classes. That is, adding W4 and the 3-sun to Tucker’s forbidden
subgraphs for PCA graphs, we obtain the complete list of forbidden subgraphs
for PHCA graphs. Similarly, adding W4 to Tucker’s forbidden family for UCA
graphs, we obtain all the subgraphs forbidden for UHCA graphs.

The algorithms have complexity O(n + m). Moreover, if the input consists of
a circularly ordered PCA model, the complexity drops to O(n).
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Abstract. The pathwidth of a graph G is the minimum clique number of
H minus one, over all interval supergraphs H of G. Although pathwidth is
a well-known and well-studied graph parameter, there are extremely few
graph classes for which pathwidh is known to be tractable in polynomial
time. We give in this paper an O(n2)-time algorithm computing the
pathwidth of circular-arc graphs.

1 Introduction

A graph is an interval graph if it is the intersection graph of a finite set of
intervals on a line. The pathwidth of an arbitrary graph G is the minimum clique
number of H , over all interval supergraphs H of G, on the same vertex set.
Pathwidth has been introduced in the first article of Robertson and Seymour’s
Graph Minor series [13]. It is a well-known and well studied graph parameter,
and not surprisingly NP-hard to compute. Note that the pathwidth has been
redefined and studied in different contexts under different names. The parameter
is also equal to the vertex separation number, and to the interval thickness or
node search number of the graph, minus one (see [1] for a survey).

The pathwidth problem is fixed parameter tractable. Indeed, since the class of
graphs of pathwidth at most k is minor-closed, using Roberston and Seymour’s
results on graph minors there exists an O(n2) algorithm for recognizing graphs
of pathwidth at most k, for any constant k; unfortunately this technique is not
constructive. Bodlaender and Kloks [3] give a constructive linear-time algorithm
deciding, for any fixed k, if the pathwidth of an input graph is at most k. Their
algorithm first computes a tree decomposition of the input graph of width at
most k, using the fact that the treewidth of a graph is at most its pathwidth
(see Section 3 for definitions). Then this tree decomposition is used to decide if
the pathwidth is at most k. The best approximation algorithms for pathwidth
are also based on approximation algorithms for treewidth, combined with the
fact that pwd(G) ≤ twd(G) · log n (see [1]).

By [3], the pathwidth is polynomially tractable for all classes of graphs of
bounded treewidth. For trees and forests there exist several algorithms solving
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the problem in O(n log n) time [12,5]; only recently, Skodinis [14] gave a linear
time algorithm. Even the unicyclic graphs, obtained from a tree by adding one
edge, require more complicated algorithms in order to obtain an O(n log n) time
bound [4]. There exist some other graph classes for which the pathwidth prob-
lem is polynomial, e.g. permutation graphs, but this is mainly because for these
classes the pathwidth equals the treewidth. Roughly speaking, almost every-
thing that we know about computing pathwidth comes from its relationship with
treewidth. More surprisingly, even for classes of graphs of very small treewidth,
like (biconnected) outerplanar or Halin graphs, there are interesting approxi-
mation algorithms for pathwidth [2,6]. Although in these cases the parameter
is polynomially tractable by the algorithm of [3], the running time is huge and
the dynamic programming technique of [3] could not be translated into simple,
combinatorial algorithms.

In this paper we give the first polynomial time algorithm computing the
pathwidth of circular-arc graphs. A graph is a circular-arc graph if it is the
intersection graph of a finite set of arcs on a circle. See [7] for classical results
on circular-arc graphs. The pathwidth of these graphs can be easily approxi-
mated within a factor of 2. Nevertheless, for circular-arc graphs the pathwidth
is not necessarily equal to the treewidth, and clearly this class is not of bounded
treewidth, therefore we cannot use the classical techniques for computing path-
width. Our algorithm is based on a study of interval completions of circular-arc
graphs. An interval completion of a graph G is an interval supergraph H , on
the same vertex set. If no interval completion H ′ of G is a strict subgraph of
H , we say that H is a minimal interval completion of G. We study the mini-
mal interval completions of circular-arc graphs and we characterize a subclass
of these minimal interval completions, containing optimal solutions to the path-
width problem. Based on this combinatorial result, we give an O(n2) algorithm
computing the pathwidth of circular-arc graphs.

2 Definitions and Basic Results

Let G = (V, E) be a finite, undirected and simple graph. Moreover, we only con-
sider connected graphs — in the non connected case each connected component
can be treated separately. Denote n = |V |, m = |E|. If G = (V, E) is a subgraph
of G′ = (V ′, E′) (i.e. V ⊆ V ′ and E ⊆ E′) we write G ⊆ G′. The neighborhood
of a vertex v in G is NG(v) = {u | {u, v} ∈ E}. Similarly, for a set A ⊆ V ,
NG(A) =

⋃

v∈A NG(v) \ A. As usual, the subscript is sometimes omitted. For a
set of vertices A ⊂ V , G[A] is the subgraph of G induced by A, that is the graph
(A, EA), where EA = {{x, y} | {x, y} ⊆ A and {x, y} ∈ E}.

The intersection graph of a family V of n sets is the graph G = (V, E), where
the vertices are the sets and the edges are the pairs of sets that intersect. Every
graph is the intersection graph of some family of sets [15]. A graph is an interval
graph if it is the intersection graph of a finite set of intervals on a line. A graph
is a circular-arc graph if it is the intersection graph of a finite set of arcs on a
circle. A model of an interval graph or a circular-arc graph G is a set of intervals
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or circular arcs that represent G in this way. Without loss of generality we may
assume that no two circular arcs of the model share a common endpoint.

Given a graph G, there exists a linear-time algorithm recognizing whether G
is a circular-arc graph [11]. The algorithm produces a circular-arc model if such
a model exists. Therefore, from now on we assume that our input is a circular
arc-graph together with a model MG.

Given a model MG of a circular-arc G = (V, E), we introduce some vocabulary
concerning the arcs. We identify a vertex v ∈ V with the corresponding arc in
MG. We call the clockwise endpoint of an arc v the left endpoint, denoted by
l(v), and the counterclockwise endpoint the right endpoint, denoted by r(v).
Note that an interval graph is a special case of circular-arc graphs - it is a
circular-arc graph that can be modeled with arcs that do not cover a point A on
the circle. Just cut the circle at A and straighten it into a line - this yields an
interval model. If G is a circular-arc graph with a model MG, and X is a subset
of the vertices, then MG[X ] is the restriction of MG to X , namely, the result
of removing from MG the arcs corresponding to vertices not in MG. Clearly,
MG[X ] is a model of G[X ].

To each point p on the circle in MG we assign the set of arcs V (p) that intersect
it. Clearly, V (p) is a clique in G. In particular, we are interested in the cliques
maximal with respect to inclusion. To analyze them, we need not consider all
points. In fact, it is enough to take the set of right endpoints. Using only the
right endpoints r that have the corresponding set of arcs V (r) maximal with
respect to inclusion, we define the following structure describing G.

Definition 1. Given a circular-arc model MG of G = (V, E), a clique-cycle is
the cycle CCG,M = (X , C). The vertices are the right endpoints in MG with the
corresponding sets of circular-arcs maximal by inclusion among all endpoints in
MG. The edges form a cycle, with every vertex X ∈ X adjacent to Xl, Xr ∈ X ,
where Xl (Xr) is the element of X clockwise (counterclockwise) closest to X in MG.

3 Connected Decompositions

Definition 2. Let X = {X1, ..., Xk} be a set of subsets of V such that Xi,
1 ≤ i ≤ k, is a clique in G = (V, E). If, for every {vi, vj} ∈ E, there is some Xp

such that {vi, vj} ⊆ Xp, then X is called an edge clique cover of G.

Definition 3. A connected decomposition of an arbitrary graph G = (V, E) is
a graph D = (X , A), where X is a family of subsets of V called bags and A is a
set of edges on X , such that the following three conditions are satisfied.

1. Each vertex v ∈ V appears in some bag.
2. For every edge {vi, vj} ∈ E there is a bag containing both vi and vj.
3. For every vertex v ∈ V , the bags containing v induce a connected subgraph

of D.

D = (X , A), a connected decomposition of G, is a clique connected decomposi-
tion of G if X is an edge clique cover of G.



Pathwidth of Circular-Arc Graphs 261

A path decomposition ( tree decomposition) is a connected decomposition with
D being a path (tree). The width of a decomposition is the size of a largest
bag, minus one. The pathwidth ( treewidth) of a graph G, denoted by pwd(G)
(twd(G)) is the minimum width over all path decompositions (tree decomposi-
tions) of G.

Lemma 1 (see, e.g., [7]). A graph G is an interval graph if and only of it has
a clique path decomposition.

Similarly, we can characterize circular-arc graphs through clique cycle decom-
positions. A cycle decomposition is a connected decomposition with D being a
cycle, and a clique cycle decomposition is a cycle decomposition with all bags
being cliques.

By Definition 1, we have:

Lemma 2. Given a circular-arc model MG of G = (V, E), CCG,M = (X , C) is
a clique cycle decomposition of G.

We easily deduce:

Theorem 1. A graph G is a circular-arc graph if and only if it has a clique
cycle decomposition.

Given a clique path decomposition of an interval graph, the intersection of two
consecutive cliques form a separator. Given a circular model MG of G = (V, E)
and a clique cycle decomposition CCG,M = (X , C), we say that the intersection
of two consecutive cliques of the cycle is a semi-separator.

4 Folding

Given a path decomposition P of G, let PathFill(G, P) be the graph obtained by
adding edges to G so that each bag of P becomes a clique. It is straight forward
to verify that PathFill(G, P) is an interval supergraph of G, for every path
decomposition P . Moreover P is a clique path decomposition of PathFill(G, P).

Definition 4 (see also [8]). Let X be an edge clique cover of an arbitrary
graph G and let Q = (Q1, ..., Qk) be a permutation of X . We say that (G, Q) is
a folding of G by Q.

To any folding of G by an ordered edge clique cover Q we can naturally as-
sociate, by Algorithm FillFolding of Figure 1, an interval supergraph H =
FillFolding(G, Q) of G. The algorithm also constructs a clique path decompo-
sition of H .

Lemma 3. Given a folding (G, Q) of G, the graph H = FillFolding(G, Q) is
an interval completion of G.

Proof. Observe that after the for loops, P is a path decomposition of H , since
every edge is contained in some bag, and for every vertex the bags containing
it induce a subpath of P . Hence, since H = PathFill(G, P), it is an interval
completion of G. ��



262 K. Suchan and I. Todinca

Algorithm FillFolding
Input: Graph G = (V, E) and Q = (Q1, ..., Qk), a sequence of subsets of V ;
Output: A supergraph H of G;

P = Q;
for each vertex v of G do

s = min{i | x ∈ Qi};
t = max{i | x ∈ Qi};
for j = s + 1 to t − 1 do

Pj = Pj ∪ {v};
end-for
H = PathFill(G, P);

Fig. 1. The FillFolding algorithm

We shall also say that the graph H = FillFolding(G, Q) is defined by the
folding (G, Q). The graph defined by a folding is not necessarily a minimal in-
terval completion of G. Nevertheless, we prove in Theorem 2 that every minimal
interval completion of G is defined by some folding.

Theorem 2. Let H be a minimal interval completion of a graph G with an edge
clique cover X . Then there exists a folding (G, Q), where Q is a permutation of
X , such that H = FillFolding(G, Q).

Proof. Let X = {Xi | 1 ≤ i ≤ p} and K = {Pi | 1 ≤ i ≤ k} denote an
enumeration of X and the set of maximal cliques of H , respectively. Let P =
(P1, . . . , Pk) be a clique-path of H . It defines a linear order on the set K. Let us
use it to construct a linear order on X .

In a natural way, P defines a linear pre-order on X by

Xa ≤ Xb if ∃i, j such that Xa ⊆ Pi, Xb ⊆ Pj , where 1 ≤ i ≤ j ≤ k, 1 ≤ a, b ≤ p,

where for a clique Xi that is contained in several maximal cliques of H , consider
just the first occurrence. Transform it into a linear order (sequence) Q by fixing
any permutation inside the equivalence classes.

Let us define H ′ = FillFolding(G, Q), and prove that H ′ = H . By
Lemma 3, H ′ is an interval completion of G. Moreover, E(H ′) ⊆ E(H), since
xy ∈ E(H ′) only if the interval between the first and the last element in Q that
contains x intersects the one corresponding to y. In this case, the corresponding
intervals in P intersect as well, so there is xy ∈ E(H). By minimality of H , there
is H = H ′. ��

It is well-known (see also Lemma 1) that the pathwidth of G is the minimum,
over all interval completions H of G, of the cliquesize of H minus one. Clearly, we
can restrict to minimal interval completions. Theorem 2 tells us that an optimal
interval completion for the pathwidth problem is defined by some folding of the
graph.
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5 Folding of Circular-Arc Graphs

Let (X , C) be a clique cycle of the circular-arc graph G = (V, E), obtained like
in Definition 1. Consider a permutation Q of the set of bags X . In the case of
circular-arc graphs, we study the permutation Q with respect to the circular
ordering of X on the cycle (X , C). Therefore it is more convenient to think of a
folding as a triple (X , C, Q).

Remark 1. Let (X , C, Q) be a folding of the circular-arc graph G. Consider the
clique path decomposition P produced by the algorithm FillFolding(G, Q).
Let us look at the Algorithm FillFolding(see Figure 1). Observe that each
bag P of P is the union of a clique Q ∈ Q (which corresponds to the bag
P at the initialization step) and some semi-separators of type Q′ ∩ Q′′, where
Q′, Q′′ are two cliques consecutive on the cycle, but separated by Q in Q. We
say that the clique Q and the semi-separators have been merged by the folding.
A folding (X , C, Q) naturally defines an upper part and a lower part of the cycle
(X , C). Let QL, QR be the leftmost and rightmost element of the permutation
Q. Let X down (X up) denote the cliques counterclockwise (clockwise) between QL

and QR on the cycle. Let Qdown = (QL = Ql1 , Ql2 , . . . , Qlr = QR) denote the
restriction of Q to X down. Similarly let Qup = (QL = Qu1 , Qu2 , . . . , Qut = QR)
denote the restriction of Q to X up.

Definition 5. Given a clique cycle decomposition (X , C) of G and a permuta-
tion Q of X , we say that a clique X ∈ X is a pivot of the folding (X , C, Q) if its
neighbors on the cycle (X , C) appear on the same side of X in Q. We extend this
definition to any subset X ′ of X : X ∈ X ′ is a pivot w.r.t. X ′ if XL, XR ∈ X ′, its
closest neighbors on the cycle among the elements of X ′, are on the same side
of X in Q.

Definition 6. Let (X , C) be a clique cycle decomposition of G = (V, E). A
permutation Q of a subset X ′ ⊆ X , is k-monotone if it contains at most k
pivots. The monotonicity of Q is the minimum k such that Q is k-monotone.
The monotonicity of a folding (X , C, Q) is the monotonicity of Q.

The main combinatorial result of the paper consists in proving that there exists
a 2-monotone folding (X , C, Q) such that H = FillFolding(G, Q) is an interval
completion of G satisfying pwd(H) = pwd(G). Therefore, an optimum interval
completion for the pathwidth problem can be found among the completions de-
fined by 2-monotone foldings. In a 2-monotone folding, the only pivots are the
first and last element of Q. Moreover, Qup (Qdown) is clockwise (counterclock-
wise) consecutive on the cycle (X , C).

The following lemma is straightforward (see also Remark 1).

Lemma 4. Let (X , C, Q) be a 2-monotone folding and let P be the clique path
decomposition produced by FillFolding(G, Q). Every bag of P is the union of a
clique Q ∈ Q and the unique semi-separator corresponding to the edge {Q′, Q′′}
of the cycle, such that Q separates Q′ and Q′′ in the permutation Q.
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Fig. 2. Reduction of A (top) to A′ : one way (middle) or the other (bottom)

Definition 7. Let (X , C) be a clique cycle decomposition of G = (V, E) and let
(X , C, Q) be a 4-monotone folding. Let QL, QR be the end-cliques (pivots) of Q.
Let B1, P be the other pivots, ordered as in Q. Assume w.l.o.g. that B1, P belong
to Qup. The consecutive part of the cycle that appears counterclockwise, starting
right after B1, passing through P , continuing as long as it stays after B1 in Q
is called the anomaly (see the top part of Figure 2).

Notice that for a 4-monotone folding Q, the restriction of Q to X \ A is 2-
monotone.

One of our main tools (Theorem 3) shows that if (X , C, Q) is a 4-monotone
folding which defines H = FillFolding(G, Q), then there exists a 2-monotone
folding (X , C, Q′) defining an interval graph H ′ = FillFolding(G, Q′) of path-
width smaller or equal the pathwidth of H . Here is an informal sketch of the
main idea. Consider an anomaly A of the 4-monotone folding (X , C, Q). Suppose
that the anomaly is in the upper part of the cycle, as on Figure 2.

Notice that when we restrict (X , C) to the cliques that are not in the anomaly
(just remove every X ∈ A, making the former neighbors of X adjacent), then we
obtain a clique cycle of G = G[

⋃

(X \ A)], an induced subgraph of G. Moreover,
we obtain (X , C, Q), a 2-monotone folding of G, where Q is the restriction of
sequence Q to the cliques not in the anomaly X = X \ A. It defines an interval
completion H = FillFolding(G, Q). Notice that the pathwidth of H is at most
the pathwidth of H .
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Definition 8. Let (X , C) be a clique cycle decomposition of G = (V, E) and
let (X , C, Q) be a 4-monotone folding with the anomaly A. The A-width of
(X , C, Q) is the pathwidth of H = FillFolding(G, Q), where G is the circular-
arc graph defined by the clique cycle (X , C) restricted to X = X \ A and Q is
the sequence Q restricted to X .

One step of the procedure is to slightly modify the folding (X , C, Q) to obtain
(X , C, Q′) with a strictly smaller anomaly A′, ensuring that the A′-width of
(X , C, Q′) is not bigger than the pathwidth of H . Continue until the anomaly
is empty. Eventually, this yields a folding (X , C, Q′′) which is 2-monotone. Its
anomaly A′′ being empty, the A′′-width of this folding is equal to the pathwidth
of H ′′ = FillFolding(G, Q′′), and it is not bigger than the pathwidth of H .

Let us give in more detail the construction of (X , C, Q′) based on (X , C, Q).
Consider the pivots of (X , C, Q) that are not end-cliques of Q. Let P be the one
that belongs to the anomaly A, and let B1 be the other one. Let Bk+1 be the
neighbor of B1 on the cycle that belongs to the anomaly (labeled Y in Figure
2). Let B2, . . . , Bk be the cliques, which do not belong to the anomaly, that
follow B1 clockwise on the cycle and appear before Bk+1 in Q. Let S1, . . . , Sk+1
be the semi-separators on the lower part of the cycle, such that Si is merged
with the corresponding Bi in FillFolding(G, Q). In this setting, we choose a
semi-separator Sl and permute Q in order to put all Bk+1, B1, . . . , Bl−1 (in this
order) between Q and Q′, where Q, Q′ are the consecutive cliques in the lower
part of the cycle such that Sl = Q ∩ Q′. We choose Sl such that the new folding
(X , C, Q′) has the desired property. We say that in such a situation we put
Bk+1, B1, . . . , Bl−1 on the semi-separator Sl. This construction is illustrated in
Figure 2. Informally, the bags Bk+1, B1, . . . , Bl−1 slide (without jumping) along
the cycle, in the clockwise sense, and they stop above the edge of the cycle
corresponding to Sl.

Theorem 3. Let (X , C) be a clique cycle decomposition of G = (V, E). Let
(X , C, Q) be a 4-monotone folding and H = FillFolding(G, Q). Then there
is a 2-monotone folding (X , C, Q′) such that H ′ = FillFolding(G, Q′) has
pathwidth at most pwd(H). Moreover, we can assume that (X , C, Q′) is such
that X ′up = X up and X ′down = X down.

Proof. Let (X , C, Q′) be a 4-monotone folding with the anomaly A′, such that
X ′up = X up and X ′down = X down, which satisfies the following Properties:

1. A′ ⊆ A;
2. for any clique Q of A′, the semi-separator S of the lower part of the cycle

merged with Q in FillFolding(G, Q′) is the same as in FillFolding(G, Q);
3. the A′-width of (X , C, Q′) is not bigger than the pathwidth of H ,
4. the anomaly A′ is inclusion minimal among all such foldings.

Let us show that A′ is in fact empty, thus the pathwidth of H ′ is not bigger
than the pathwidth of H . Suppose A′ is not empty.
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We use the notations introduced in the informal description above. Let us use
Y and SY as shorthands for Bk+1 and Sk+1. By Property 2 and Remark 1, we
have:

|Y ∪ SY | ≤ pwd(H) + 1. (1)

The semi-separators Si, 1 ≤ i ≤ k + 1, can be partitioned as follows:

Si = N j
i ∪ Bj

i ∪ Y j
i ∪ Ij

i , for any 1 ≤ j ≤ k , where
N j

i = Si \ (Bj ∪ Y ), Bj
i = Si ∩ Bj \ Y, Y j

i = Si ∩ Y \ Bj , I
j
i = Si ∩ Bj ∩ Y.

(2)

Claim. For any 1 ≤ i ≤ k, 1 ≤ p ≤ q ≤ k + 1, one of the following holds:

|Bi ∪ Sp| ≥ |Bi ∪ Sq| or |Y ∪ Sq| ≥ |Y ∪ Sp| (3)

Proof. Suppose it is not true. By Equation 2, we have:

|Bi ∪ N i
p ∪ Y i

p | < |Bi ∪ N i
q ∪ Y i

q | and |Y ∪ N i
q ∪ Bi

q| < |Y ∪ N i
p ∪ Bi

p|,

which yields a contradiction: |N i
p| < |N i

q| and |N i
q| < |N i

p|, since for any j, p, q,
1 ≤ j ≤ k, 1 ≤ p ≤ q ≤ k + 1 there is Y j

q ⊆ Y j
p and Bj

p ⊆ Bj
q , by properties of

the clique cycle. ��

Claim. Let l be the biggest integer such that |Y ∪SY | < |Y ∪Si|, for 1 ≤ i ≤ l−1.
Then

|Y ∪ SY | ≥ |Y ∪ Sl|, (4)

|Bi ∪ Si| ≥ |Bi ∪ Sl|, for any 1 ≤ i ≤ l, (5)

Proof. The first equation is clear from the construction. Since |Y ∪Sl| ≤ |Y ∪SY |
and |Y ∪ SY | < |Y ∪ Si|, for any 1 ≤ i ≤ l − 1, there is |Y ∪ Sl| < |Y ∪ Si|,
for any 1 ≤ i ≤ l − 1. Now, by Equation 3, for any 1 ≤ i ≤ l − 1, we get
|Bi ∪ Si| ≥ |Bi ∪ Sl|, for any 1 ≤ i ≤ l − 1. ��

Therefore, by putting Y and all Bi, for 1 ≤ i ≤ l−1, on Sl, we create a new folding
(X , C, Q′′) with a strictly smaller anomaly A′′. Indeed, there is Y ∈ A′ \ A′′.
Notice there may be other cliques in A′ \ A′′ as well.

Let us check that the A′′-width of the folding (X , C, Q′′) is at most pwd(H).
For each clique X of Q′′ \A′′, let SX be the (unique) semi-separator of the lower
part of the cycle to which X is merged in FillFolding(G, Q′′). The A′′-width
of (X , C, Q′′) is the maximum, over all cliques X , of |X ∪SX |−1. We check that
|X ∪ SX | − 1 is at most the pwd(H), for every clique X . If X is also in Q′ \ A′,
this quantity is upper bounded by the A′-width of (X , C, Q′) and the conclusion
follows by Property 3. If X = Y , then SX = Sl and the conclusion follows from
Equations 4 and 1. If X is one of the Bi’s, 1 ≤ i ≤ l − 1, again SX = Sl and the
conclusion follows from Equation 5 and Property 3. Finally, if X is one of the
cliques of A′ \ A′′, different from Y , the conclusion follows from Property 2.
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The new folding (X , C, Q′′) also respects Property 2, since in the permutation
Q′′ the cliques of A′′ have the same position w.r.t. the lower part of the cycle as
before.

The construction of Q′′ contradicts Property 4 of Q′. So A′ must be empty.
��

The following theorem, which is the main combinatorial result of this paper,
shows that not only a 4-monotone but any folding can be reduced to a 2-
monotone one without augmenting the pathwidth of the resulting completion.

Theorem 4. Let (X , C) be a clique cycle decomposition of G = (V, E). There is
a folding (X , C, Q), with Q being a permutation of X , such that Q is 2-monotone
and H = FillFolding(G, Q) is an interval completion of G of pathwidth equal
the pathwidth of G.

Proof. Let (X , C, Q) be a folding of minimum monotonicity such that the path-
width of H = FillFolding(G, Q) is not bigger than the pathwidth of G. We
will prove that it is 2-monotone.

Suppose it is not. Assume w.l.o.g. that X up contains some pivots other than
QL, QR. Let B1 be the leftmost pivot in Qup different from QL. Let P be the
rightmost in Qup among the pivots which are between QL and B1 clockwise on
the cycle (X , C). Let Qup

L denote the subsequence of Qup induced by cliques
clockwise between QL and P (included) on the cycle. Let Qup

C denote the subse-
quence of Qup induced by cliques between P and B1 (included), and Qup

R denote
the subsequence of Qup induced by cliques between B1 and QR (included). Let
Gup

L be the graph defined by the folding Qup
L , restricted to the corresponding set

of bags: Gup
L = FillFolding(G[

⋃

Qup
L ], Qup

L ). We denote by Pup
L the clique path

decomposition produced by the folding algorithm. Similarly, we define Gup
C , Gup

R

and Gdown, with the corresponding clique path decompositions. Let G̃ be the
union of these four graphs. Note that G̃ is a circular-arc graph. A clique cycle
decomposition (X̃ , C̃) of G̃ is obtained by gluing into a cycle the paths Pup

L , the
reverse of Pup

C , Pup
R , and to the reverse of P down. The gluing is performed by

identifying the bags P , then B1, QR and finally QL.
Moreover, this procedure yields a folding (X̃ , C̃, Q̃) of G̃. The bags of X̃ are

in one-to-one correspondence to the bags of X , so the permutation Q of X is
translated into a permutation Q̃ of X̃ . Notice that (X̃ , C̃, Q̃) is a 4-monotone
folding, since QL, B1, P, QR are the only pivots left. Also FillFolding(G̃, Q̃) =
H = FillFolding(G, Q).

By Theorem 3 on (X̃ , C̃, Q̃) there is a 2-monotone folding (X̃ , C̃, Q̃′) such that
the pathwidth of H ′ = FillFolding(G̃, Q̃′) is not bigger than the pathwidth of
H , thus not bigger than the pathwidth of G.

Since Q̃′ is 2-monotone and X̃ ′up = X̃ up, the only pivots of Q̃′ are QL and
QR. Notice that there is : Q̃′up equals Pup

L glued to the reverse of Pup
C glued to

Pup
R , and Q̃′down equals P down.
Because of the one-to-one correspondence between the elements of X and X̃ ,

we construct the folding (X , C, Q′) directly from (X̃ , C̃, Q̃′), by just replacing the
elements of X̃ with the corresponding elements of X . Clearly, B1 and P are not
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pivots of Q′, whereas all the other pivots of Q′ are also pivots of Q. Moreover,
it is easy to verify that FillFolding(G, Q′) = FillFolding(G̃, Q̃′). Therefore,
(X , C, Q′) is a folding of strictly smaller monotonicity than (X , C, Q′), which
also defines a completion of pathwidth not bigger that the pathwidth of G. A
contradiction. ��

6 The Algorithm

Our algorithm computing the pathwidth of circular-arc graphs is very similar
to the algorithms computing the treewidth and minimum fill-in for circle and
circular-arc graphs [9,10].

Consider a clique cycle CCG,M = (X , C) of the input graph G, obtained from
a circular-arc model like in Definition 1. Subdivide each edge of the cycle by
adding a new bag containing the semi-separator corresponding to the edge. We
obtain a clique-semi-separator cycle alternating original clique bags and semi-
separator bags. We should also see this cycle as a (regular) polygon of scanpoints
PG, following the terminology of [10]; the scanpoints are the clique and semi-
separator bags of the cycle. Therefore we associate to each scanpoint s the set of
vertices V (s), corresponding to the clique or semi-separator represented by the
scanpoint. For each triangle T formed by three scanpoints s1, s2, s3, define the
width w(T ) of the triangle as the cardinality of the union V (s1)∪V (s2)∪V (s3).

Definition 9. A linear (planar) triangulation LP of the polygon of scanpoints
PG is a planar triangulation such that every triangle contains at most two diag-
onals. The width w(LT ) of the linear triangulation is the maximum width over
its faces (triangles).

Theorem 5. For any circular-arc graph G, its pathwidth is the minimum, over
all linear planar triangulations LT of PG, of w(LT ) − 1.

Proof. Let us only sketch the proof of this theorem. We first show that from
any planar linear triangulation LT one can construct a path decomposition of
G, of width w(LT ) − 1. Conversely, given a 2-monotone folding (X , C, Q) one
can construct a planar linear triangulation of width at most FillFolding(G, Q),
plus one. The conclusion follows by Theorem 4. ��

Due to space restrictions, we do not describe the dynamic programming algo-
rithm for computing a linear planar triangulation of PG of minimum width. We
point out that it is very similar to the one of [9,10], which describe algorithms
computing (non necessarily linear) planar triangulations of a polygon playing
the same role as PG.

Theorem 6. The pathwidth of circular-arc graphs can be computed in O(n2)
time.
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Characterization and Recognition of Digraphs of

Bounded Kelly-width

Daniel Meister, Jan Arne Telle, and Martin Vatshelle

Institutt for Informatikk, Universitetet i Bergen, 5020 Bergen, Norway

Abstract. Kelly-width is a parameter of directed graphs recently pro-
posed by Hunter and Kreutzer as a directed analogue of treewidth. We
give several alternative characterizations of directed graphs of bounded
Kelly-width in support of this analogy. We apply these results to give
the first polynomial-time algorithm recognizing directed graphs of Kelly-
width 2. For an input directed graph G = (V, A) the algorithm will out-
put a vertex ordering and a directed graph H = (V, B) with A ⊆ B
witnessing either that G has Kelly-width at most 2 or that G has Kelly-
width at least 3, in time linear in H .

1 Introduction

The tractability of large classes of NP-complete problems when parameterized
by the treewidth of the input graph counts among the strongest results in algo-
rithmic graph theory. The algorithms behind this tractability have two stages:
first an algorithm computing treewidth, then an algorithm solving the specific
problem using the tree-structure discovered in the first stage. See for example [2]
for a recent overview of these algorithms. For directed graphs (digraphs) there
have been several proposals for a parameter analogous to treewidth: ‘directed
treewidth’ of Johnson, Robertson, Seymour, Thomas [4], ‘D-width’ of Safari
[7], ‘DAG-width’ of Berwanger, Dawar, Hunter, Kreutzer [1] and independently
Obdržálek [6], and ‘Kelly-width’ of Hunter and Kreutzer [3]. Which of these
proposed parameters is the better analogue of treewidth? In this paper we give
evidence in support of the Kelly-width parameter.

The success of a model depends on a balance between the modeling power,
which measures how general its domain of application is, and the analytical
power, which measures how good it is as an analytical tool. The two are typically
in conflict. This is also the case for the above proposals for tree-like parameters
of digraphs. The better the modeling power, e.g. the larger the class of digraphs
that have bounded parameter value, the worse the analytical power, e.g. the
smaller the chance of successfully emulating both stages of the algorithmic re-
sults for treewidth. We do not go into details of the modeling and analytical
powers of each of the proposed digraph parameters, but simply note that from
a purely algorithmic point of view there is at least not yet a clear winner. How
then to choose the digraph parameter which is the most natural directed ana-
logue of treewidth? Note that while some concepts of undirected graphs have

A. Brandstädt, D. Kratsch, and H. Müller (Eds.): WG 2007, LNCS 4769, pp. 270–279, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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unambiguous natural translations to directed graphs, e.g. from paths to directed
paths, there are other concepts, e.g. cliques and separators, for which the trans-
lation is less clear. The treewidth parameter is known to have many equivalent
characterizations. If we start with a characterization of treewidth that uses only
concepts that have unambiguous translations to directed graphs then we should
arrive at a directed graph parameter which is a natural analogue of treewidth.
This is the approach we take in this paper. In Section 3, we give a new charac-
terization of digraphs of Kelly-width at most k arising from a characterization of
treewidth that uses the fairly unambiguous concepts of vertex orderings, paths
and neighbours.

We also enhance the algorithmic argument in favour of Kelly-width. Digraphs
of Kelly-width 1 are the directed acyclic graphs and recognizable by a simple
algorithm. For all larger values of k the only algorithms that were known for
recognizing digraphs of Kelly-width k had running time exponential in the size
of the input digraph [3]. Using the given characterizations we are able to present
a fast algorithm recognizing digraphs of Kelly-width 2 in Section 4. For an in-
put digraph G = (V, A) this algorithm will output a vertex ordering and a
digraph H = (V, B) with A ⊆ B witnessing either that G has Kelly-width at
most 2 or that G has Kelly-width at least 3, in time linear in H . In the positive
case the witness can be used to easily find a decomposition of the digraph into
a tree-like structure.

Due to space restrictions proofs are omitted. Complete proofs can be found
in the corresponding technical report [5].

2 Graph Preliminaries and Digraphs of Bounded
Kelly-width

A simple finite directed graph G is a pair of sets, (V, A), where V is finite and A
is an irreflexive relation over V . The set V is called the vertex set of G, and A is
called the arc set of G. Since we mostly consider simple finite directed graphs,
we shortly call them “digraphs”. When we deal with undirected graphs, we will
explicitly mention it. For an arbitrary digraph H , V (H) and A(H) denote the
vertex and arc set of H , respectively. An arc of graph G is denoted as (u, v) and
u is the start vertex and v is the end vertex of (u, v). Let H be a digraph. We
say that G is a subgraph of H , if V ⊆ V (H) and A ⊆ A(H). If V = V (H) and G
is a subgraph of H then G is a spanning subgraph or partial graph of H . Further
definitions are given when they are needed.

Hunter and Kreutzer introduced the notion of Kelly-width [3]. Kelly-width
is a parameter for digraphs, and it is the least width of a so-called Kelly-
decomposition. We will not define Kelly-decompositions here, since we will not
use this notion. The authors gave several alternative characterizations of di-
graphs of bounded Kelly-width by: elimination process, inductive construction,
graph game. We will study graphs of bounded Kelly-width starting from the
inductive construction. Let G = (V, A) be a digraph. Let u and v be ver-
tices of G. We call v an in-neighbour of u, if (v, u) is an arc of G. The (open)
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in-neighbourhood of u, denoted as N in
G (u), is the set of in-neighbours of u. The

closed in-neighbourhood of u, denoted as N in
G [u], is defined as N in

G (u) ∪ {u}.
Similarly, v is an out-neighbour of u, if (u, v) is an arc of G. Open and closed
out-neighbourhood of a vertex are defined respectively. The out-degree of a vertex
is the number of its out-neighbours. Let X be a set of vertices of G. We define
the common in-neighbourhood of X , denoted as

⋂

N in
G [X ], recursively:

X = ∅ :
⋂

N in
G [X ] =def V

X �= ∅ and a ∈ X :
⋂

N in
G [X ] =def N in

G [a] ∩
⋂

N in
G [X \ {a}] .

The inductive construction characterization of digraphs of bounded Kelly-width
by Hunter and Kreutzer started from a basic class of graphs, and the partial
graph relation defines the complete class. The basic graphs are called k-DAGs.
Since certain of our statements become easier, e.g., Theorem 5, we generalise the
definition and define k-GDAGs.

Definition 1. Let k ≥ 0. The class of generalised k-DAGs, k-GDAGs, for short,
is the class of digraphs inductively defined by the two following construction steps:

(1) a graph on one vertex is a k-GDAG
(2) let G be a k-GDAG and let u be a vertex that does not appear in G. Let X

be a set of at most k vertices of G, called the parent vertices of u. Then, G′

is a k-GDAG where G′ emerges from G by adding vertex u and the following
arc set:

{

(u, x) : x ∈ X
}

∪
{

(y, u) : y ∈
⋂

N in
G [X ]

}

.

With a k-GDAG, we associate a sequence 〈x1, . . . , xn〉 of vertices, where x1
is the vertex of the start graph in construction step (1) of Definition 1, and xi,
i ∈ {2, . . . , n}, is added to the graph on the vertices x1, . . . , xi−1, that has already
been constructed, according to construction step (2). Let k ≥ 0, and let G =
(V, A) be a k-GDAG. A vertex sequence σ = 〈x1, . . . , xn〉 for G is a construction
sequence for G, if G can be obtained according to construction steps (1) and
(2) adding vertices according to σ and choosing Nout

G (xi)∩{x1, . . . , xi−1} as the
parent vertices set of xi, i ∈ {1, . . . , n}. Parent vertices are always defined with
respect to a vertex sequence. The child vertices of a vertex x are those vertices
that choose x as a parent vertex.

Definition 2. Let k ≥ 0, and let G be a digraph. G is a partial k-GDAG if and
only if G is a partial graph of some k-GDAG.

Hunter-Kreutzer k-DAGs are defined analogous to k-GDAGs with the following
difference: instead of starting with a graph on a single vertex in construction
step (1), k-DAGs start with a complete graph on k vertices. This means that
every k-DAG contains a complete subgraph on k vertices, which is not true
for k-GDAGs in general. Partial k-DAGs are partial graphs of k-DAGs. Even
though the classes of k-GDAGs and k-DAGs do not coincide, the derived classes
of partial graphs do.
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Lemma 1. Let k ≥ 0, and let G be a digraph. G is a partial k-GDAG if and
only if G is a partial k-DAG.

The Kelly-width of a digraph is a width parameter based on the width of
Kelly-decompositions. Kelly-width and Kelly-decomposition were introduced by
Hunter and Kreutzer as a decomposition counterpart of tree-decompositions for
undirected graphs [3]. The authors showed a strong correspondence between
partial k-DAGs and graphs of bounded Kelly-width.

Theorem 1 ([3]). Let k ≥ 0, and let G be a digraph. G has Kelly-width at most
k + 1 if and only if G is a partial k-DAG.

Corollary 1. Let k ≥ 0, and let G be a digraph. G has Kelly-width at most
k + 1 if and only if G is a partial k-GDAG.

In the following, we will mostly deal with k-GDAGs and partial k-GDAGs. We
will also speak of “graphs of bounded Kelly-width”. k-DAGs are mentioned only
occassionally.

As we motivated in the introduction, the notion of Kelly-width can be viewed
as a suitable digraph analogue of treewidth of undirected graphs. The definition
of treewidth can also be based on a class of graphs. These are the chordal graphs.
An undirected graph is chordal if it does not contain an induced cycle of length
larger than 3. The treewidth of an undirected graph G is the smallest clique-
number of a chordal graph that contains G as a subgraph, minus 1. Treewidth
is a very fundamental notion and has many different characterizations.

Our first result shows a correspondence between undirected graphs of bounded
treewidth and digraphs of bounded Kelly-width. Let G = (V, A) be a digraph.
By bi-dir(G), we denote the undirected graph on vertex set V in which two
vertices u and v are adjacent if and only if (u, v) and (v, u) are arcs of G.

Theorem 2. Let k ≥ 0. An undirected graph G is a chordal graph of treewidth
at most k if and only if there is a k-GDAG H such that G = bi-dir(H).

Corollary 2. Let k ≥ 0. An undirected graph G has treewidth at most k if and
only if there is a partial k-GDAG H such that G = bi-dir(H).

3 Characterizations of Graphs of Bounded Kelly-width

So far, graphs of bounded Kelly-width have four different characterizations: via
elimination process, inductive construction, cops-robber game, decomposition.
These many characterizations were the start point for us to consider the concepts
of Kelly-width and Kelly-decompositions as a good digraph counterpart of the
concepts of treewidth and tree-decompostion of undirected graphs. Treewidth
seems a very natural concept, since undirected graphs of bounded treewidth can
be characterised by a long list of different statements. In this section, we will add
two further results to the list of characterizations for graphs of bounded Kelly-
width. We will see that graphs of bounded Kelly-width have a vertex-ordering
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characterization, and we show that partial k-GDAGs are the same as subgraphs
of k-GDAGs. We begin by recalling the elimination process characterization by
Hunter and Kreutzer. This characterization will be used later.

3.1 Elimination Process Characterization

Undirected graphs of bounded treewidth have a nice characterization using an
elimination scheme. Let G = (V, E) be an undirected graph on at least two
vertices, and let x be a vertex of G. The operation reducing G by x yields
graph G′ that is obtained from G by deleting vertex x and adding the edge
set {{u, v} : u �= v and u, v ∈ NG(x)}. In words, G′ is obtained from G by
deleting x and making its neighbourhood (in G) into a clique.

Theorem 3 (folklore). Let k ≥ 0, and let G = (V, E) be an undirected graph.
Then, G has treewidth at most k if and only if G can be reduced to a graph on
one vertex by repeatedly reducing by a vertex of degree at most k.

The characterization of undirected graphs of bounded treewidth in Theorem 3
can be translated into the world of digraphs. However, the reduction operation
must be adjusted. Let G = (V, A) be a digraph on at least two vertices, and
let x be a vertex of G. The operation reducing G by x yields graph G′ that
is obtained from G by deleting vertex x and adding the arc set {(u, v) : u �=
v and u ∈ N in

G (x) and v ∈ Nout
G (x)}. This definition of the reduction operation

is a natural way to translate the completion from the undirected case to the
directed case, although it is not the only possibility. Hunter and Kreutzer did
this to obtain the following result for digraphs of bounded Kelly-width.

Theorem 4 ([3]). Let k ≥ 0, and let G = (V, A) be a digraph. Then, G has
Kelly-width at most k + 1 if and only if G can be reduced to a graph on one
vertex by repeatedly reducing by a vertex of out-degree at most k.

The result of Theorem 4 implies an easy algorithm for recognizing graphs of
bounded Kelly-width. Unfortunately, this algorithm is not a polynomial-time
algorithm. A given graph, partial k-GDAG or not, can have more than one
vertex of out-degree at most k − 1. There is no a priori argument or criterion
deciding which one to choose.

3.2 Vertex-Ordering Characterization

In this subsection, we show that graphs of bounded Kelly-width are the graphs
whose vertices can be arranged in a linear order to satisfy special conditions. We
start with a characterization of k-GDAGs. This characterization is used in most
of our proofs about graphs of bounded Kelly-width.

Let G = (V, A) be a digraph. A path P in G is a sequence (x0, . . . , xl) of
mutually different vertices of G where (xi, xi+1) is an arc of G for every i ∈
{0, . . . , l − 1}. Let σ be a vertex ordering for G. Path P is called σ-monotone-
left, if xl ≺σ · · · ≺σ x0 holds. P starts at vertex x0; so, if P is σ-monotone-left,
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it is a σ-monotone-left path starting at x0. For a vertex u and an arc (x, y) of G,
we say that (x, y) spans over u with respect to σ, if x ≺σ u ≺σ y or y ≺σ u ≺σ x.
If the ordering σ is uniquely determined, we shortly say that (x, y) spans over
u. Let u be a vertex of G. We say that a σ-monotone-left path in G has the
spanning-vertex u property, if the pair (P, u) satisfies the following condition: if
P contains an arc that spans over u, then P contains a vertex w ≺σ u such that
w ∈ Nout

G (u) and the arc of P that spans over u has end vertex w.

Theorem 5. Let k ≥ 0, and let G = (V, A) be a digraph. G is a k-GDAG if and
only if there is a vertex ordering σ = 〈x1, . . . , xn〉 for G such that the pair (G, σ)
satisfies the following two conditions:

(1) for every i ∈ {1, . . . , n}, |Nout
G (xi) ∩ {x1, . . . , xi−1}| ≤ k

(2) for every pair u, v of vertices of G where u ≺σ v, (u, v) is an arc of G if and
only if every σ-monotone-left path starting at v has the spanning-vertex u
property.

If G is a k-GDAG, the vertex orderings σ such that the pair (G, σ) satisfies
conditions (1) and (2) are exactly the construction sequences for G.

Also for k-DAGs, a characterization theorem in the flavour of Theorem 5 can be
formulated. However, it will have a more complex version of condition (1).

We want to extend the characterization result of Theorem 5 for k-GDAGs
to digraphs of bounded Kelly-width. Since partial k-GDAGs are just the par-
tial graphs of k-GDAGs, there must be some relaxation in the conditions of
Theorem 5. This relaxation affects condition (2). The following lemma defines
a subclass of partial k-GDAGs for which a characterization in the flavour of
Theorem 5 exists.

Lemma 2. Let k ≥ 0, and let G = (V, A) be a digraph. The following two
statements are equivalent:

(A) there is a vertex ordering σ = 〈x1, . . . , xn〉 for G such that the pair (G, σ)
satisfies the following two conditions:
(1) for every i ∈ {1, . . . , n}, |Nout

G (xi) ∩ {x1, . . . , xi−1}| ≤ k
(2) for every pair u, v of vertices of G where u ≺σ v, if (u, v) is an arc of G

then every σ-monotone-left path starting at v has the spanning-vertex u
property

(B) there is a k-GDAG H with construction sequence σ such that the
triple (G, H, σ) satisfies the following two conditions:
(3) G is a partial graph of H
(4) A(G) ∩ {(u, v) : v ≺σ u} = A(H) ∩ {(u, v) : v ≺σ u}

The crucial point of the characterization in Lemma 2 is condition (4). Informally,
the question is whether every partial k-GDAG G can be embedded into a k-
GDAG HG where HG can be constructed according to the two construction steps
such that every vertex chooses only parent vertices that are out-neighbours in
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a

b

c

d

e

f

Fig. 1. The depicted graph is a partial 1-GDAG, which can be seen using the con-
struction sequence 〈e, c, a, f, b, d〉. For a 1-GDAG H and a vertex ordering σ that shall
satisfy conditions (3) and (4) of Lemma 2, the last vertex of σ can only be a, b or d;
all other vertices have two out-neighbours in G. Distinguishing these cases, it can be
shown that part (B) of Lemma 2 cannot be satisfied for G.

G. For partial 0-GDAGs, the question can immediately be answered positively,
since 0-GDAGs do not choose any parent vertex. Interestingly, already for partial
1-GDAGs, the answer is negative. The graph depicted in Figure 1 is a partial
1-GDAG for which part (B) of Lemma 2 does not hold. So, for a characterization
of partial k-GDAGs, we have to relax the conditions a little more.

Theorem 6. Let k ≥ 0, and let G = (V, A) be a digraph. G is a partial k-GDAG
if and only if there are a vertex ordering σ = 〈x1, . . . , xn〉 and a set F of arcs
such that the triple (G, F, σ) satisfies the following two conditions, where we set
G′ =def G ∪ F :

(1) for every i ∈ {1, . . . , n}, |Nout
G′ (xi) ∩ {x1, . . . , xi−1}| ≤ k

(2) for every pair u, v of vertices of G where u ≺σ v, if (u, v) is an arc of G
then every σ-monotone-left path starting at v in G′ has the spanning-vertex u
property in G′.

Combining the result of Corollary 2 and the characterization of Theorem 6 pro-
vides the following characterization of undirected graphs of bounded treewidth.
The definitions of σ-monotone-left paths and spanning-vertex u property for
undirected graphs are analogous to the definitions for directed graphs.

Corollary 3. Let k ≥ 0, and let G = (V, E) be an undirected graph. G has
treewidth at most k if and only if there are a vertex ordering σ = 〈x1, . . . , xn〉
for G and a set F of additional edges such that the triple (G, F, σ) satisfies the
following two conditions, where we set G′ =def G ∪ F :

(1) for every i ∈ {1, . . . , n}, |NG′(xi) ∩ {x1, . . . , xi−1}| ≤ k
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(2) for every pair u, v of vertices of G where u ≺σ v, if uv is an edge of G then
every σ-monotone-left path starting at v in G′ has the spanning-vertex u
property in G′.

The concept of a σ-monotone-left path having spanning-vertex u property is un-
ambiguously translated between undirected graphs and directed graphs. Thus,
apart from the binary choice of translating ‘neighbours’ to either ‘in-neighbours’
or ‘out-neighbours’, all undirected graph concepts used in Corollary 3 to charac-
terize treewidth are unambiguously translated to give Theorem 6 characterizing
Kelly-width. In our opinion this constitutes a weighty argument that Kelly-width
is indeed the natural directed analogue of treewidth.

3.3 Subgraph Characterization

From the characterization result of Theorem 6, we derive yet another character-
ization of digraphs of bounded Kelly-width. This characterization is not surpris-
ing, rather a necessity. It simply says that “partial graph” in the definition of
partial k-GDAGs can be replaced by the more natural term “subgraph”. This
is an analogue to partial k-trees, which are defined as partial graphs of k-trees
and can be characterised as subgraphs of k-trees.

Theorem 7. Let k ≥ 0, and let G = (V, A) be a digraph. Then, G is a partial
k-GDAG if and only if G is a subgraph of a k-GDAG.

4 A Fast Algorithm for Recognition of Graphs of
Kelly-width 2

Theorem 4 gives an algorithm for recognition of digraphs of bounded Kelly-
width: a graph has Kelly-width at most k + 1 if and only if it can be reduced
to a graph on a single vertex by repeatedly reducing by a vertex of out-degree
at most k (Theorem 4). A polynomial-time algorithm does not evolve directly
from this result, since it is not clear which of the possible vertices to choose.
However, in this section we show that it does give a polynomial-time algorithm
for Kelly-width 2. In fact, we will show that every choice of a vertex is then a
good choice.

For graphs of Kelly-width 2, vertices of out-degree 0 and 1 can be chosen.
We treat the two cases separately. The main difference between both cases is
that reducing a graph by a vertex of out-degree 0 does not change the remaining
graph, whereas reducing by a vertex of out-degree 1 may add new arcs between
vertices in the remaining graph. At first, we consider the out-degree 0 case. We
can even show a general result: the Kelly-width of a digraph is not influenced
by vertices of out-degree 0.

Theorem 8. Let k ≥ 0, and let G = (V, A) be a digraph on at least two vertices.
Let a be a vertex of G of out-degree 0. Then, G is a partial k-GDAG if and only
if the graph obtained from reducing G by a is a partial k-GDAG.
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The proof of the case of reducing by a vertex of out-degree 1 is based on the
fact that we can perform an operation on a k-GDAG that corresponds to the
reduction on a contained partial graph. This operation is a variant of edge-
contraction. Let G = (V, A) be a digraph, and let (a, b) be an arc of G. The graph
obtained from in-contracting arc (a, b) in G, denoted as G�i(a, b), is defined
as (G−a) ∪ {(x, b) : x �= b and x ∈ N in

G (a)}. Informally spoken, arc (a, b) is
in-contracted by deleting vertex a and making every in-neighbour of a an in-
neighbour of b. If a has out-degree 1, in-contracting arc (a, b) is exactly what we
mean by reducing vertex a.

Theorem 9. Let G = (V, A) be a partial 1-GDAG, and let (a, b) be an arc of
G. Then, G�i(a, b) is a partial 1-GDAG.

Corollary 4. Let G = (V, A) be a digraph, and let a be a vertex of out-degree 1 of
G. Then, G is a partial 1-GDAG if and only if the graph obtained from reducing
G by a is a partial 1-GDAG.

The result of Theorem 9 is stronger than the corresponding implication of Corol-
lary 4: reducing a graph by a vertex of out-degree 1 can be simulated by an
appropriate in-contraction operation. Equivalence only holds, if the start vertex
of the in-contracted arc has out-degree 1. It is a natural question to ask whether
Corollary 4 holds for partial k-GDAGs for k ≥ 2.

Using the two main results about reducing a graph, we obtain a characteri-
zation of graphs of Kelly-width 2 that is stronger than Theorem 4.

Theorem 10. Let G = (V, A) be a digraph. Then, G is a partial 1-GDAG if
and only if G can be reduced to a graph on one vertex by repeatedly reducing by
an arbitrary vertex of out-degree at most 1.

The result of Theorem 10 implies a fast algorithm for recognition of graphs
of Kelly-width at most 2. The reduction sequence can even be used to con-
struct a witness for being a Kelly-width-2 graph: a 1-GDAG containing the
input graph G. In the negative case, our algorithm outputs a graph H ′ and a
vertex sequence σ′ = 〈xr , . . . , xn〉 of the following kind: let Gn =def G, and let
Gi be obtained from Gi+1 by reducing by xi+1, i ∈ {r, . . . , n − 1}. Then, xi+1,
i ∈ {r, . . . , n − 1}, has out-degree at most 1 in Gi+1, and Gr does not contain
any vertex of out-degree at most 1. Due to Theorem 10, G can therefore not be
a partial 1-GDAG. The output witness H ′ is defined as follows: let H ′

r =def Gr,
and obtain H ′

i+1 from H ′
i by adding xi+1 according to construction step (2) of

Definition 1 choosing as parent vertex the out-neighbour of xi+1 in Gi+1, if there
is one. Then, H ′ =def H ′

n. Using σ′ it is easy to verify by the user of the algo-
rithm that H ′ arises from G and thus the algorithm worked correctly. Moreover,
H ′ is independent of σ′ in the sense that on input H ′ any reduction sequence on
vertices of out-degree at most 1 will result in Gr.

Theorem 11. There is an algorithm that, given a digraph G, decides whether
G has Kelly-width at most 2, and if so, outputs a 1-GDAG H that contains G as
partial graph. If G has Kelly-width at least 3, the algorithm outputs a witness for



Characterization and Recognition of Digraphs of Bounded Kelly-width 279

this case, which is a graph containing G as partial graph and a vertex sequence.
The running time and the working space of the algorithm are linear in the size
of the output graph.

For deciding whether a graph has Kelly-width exactly 2, it suffices to run the
algorithm only for non-acyclic graphs. Acyclic graphs are exactly the graphs of
Kelly-width 1.

5 Final Remarks

Since Kelly-width of a directed graph is a new concept, a lot of problems can
still be solved. The most important question, however, affects the status of Kelly-
width: does it really capture the notion of treewidth for undirected graphs in
the directed setting? We gave good reasons to answer positively: we presented
two new characterizations of digraphs of bounded Kelly-width, and we gave an
easy algorithm for recognition of digraphs of Kelly-width 2. This recognition
algorithm can be considered a directed version of the undirected counterpart: a
reduction algorithm for graphs of treewidth at most 1. Recognition algorithms
for graphs of bounded Kelly-width are of great interest, since one can expect that
they also compute a Kelly-decomposition, which is important for the design of
algorithms solving optimization problems on digraphs of bounded Kelly-width.
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Abstract. We prove new structural properties for tree-decompositions
of planar graphs that we use to improve upon the runtime of tree-
decomposition based dynamic programming approaches for several NP-
hard planar graph problems. We give for example the fastest algorithm
for Planar Dominating Set of runtime 3tw · nO(1), when we take
the treewidth tw as the measure for the exponential worst case be-
havior. We also introduce a tree-decomposition based approach to solve
non-local problems efficiently, such as Planar Hamiltonian Cycle in
runtime 6tw · nO(1). From any input tree-decomposition, we compute
in time O(nm) a tree-decomposition with geometric properties, which
decomposes the plane into disks, and where the graph separators form
Jordan curves in the plane.

1 Introduction

Many separator results for topological graphs, especially for planar embedded
graphs base on the fact that separators have a structure that cuts the surface into
two or more pieces onto which the separated subgraphs are embedded on. The
celebrated and widely applied (e.g., in many divide-and-conquer approaches) re-
sult of Lipton and Tarjan [23] finds in planar graphs a small sized separator.
However, their result says nothing about the structure of the separator, it can
be any set of discrete points. Applying the idea of Miller for finding small sim-
ple cyclic separators [24] in planar triangulations, one can find small separators
whose vertices can be connected by a closed curve in the plane intersecting the
graph only in vertices, so-called Jordan curves (e.g. see [4]). Tree-decompositions
have been historically the choice when solving NP-hard optimization and FPT
problems with a dynamic programming approach (see for example [6] for an
overview). Although much is known about the combinatorial structure of tree-
decompositions (a.o, [7,31]), only few results are known to the author relating
to the topology of tree-decompositions of planar graphs (e.g., [9]). A branch-
decomposition is another tool, that was introduced by Robertson and Seymour
in their proof of the Graph Minors Theorem and the parameters of these similar
structures, the treewidth tw(G) and branchwidth bw(G) of the graph G have the
relation bw(G) ≤ tw(G) + 1 ≤ 1.5 bw(G) [27]. Recently, branch-decompositions
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Table 1. Worst-case runtime expressed by treewidth tw and branchwidth bw of the
input graph. The Planar Hamiltonian Cycle stands representatively for all planar
graph problems posted in [16] such as Metric TSP, whose algorithms we can im-
prove analogously. In [13], only those graph problems are improved upon, which are
unweighted or of small integer weights. Therefor, we state the improvements indepen-
dently for weighted and unweighted graph problems. In some calculations, the fast
matrix multiplication constant ω < 2.376 is hidden.

Previous results New results

weighted Planar Dom Set O(n2min{2 tw,2.38 bw}) O(n21.58 tw)

unweighted Planar Dom Set O(n21.89 bw) O(n2min{1.58 tw,1.89 bw})

w Plan Independent Dom Set O(n2min{2 tw,2.28 bw}) O(n21.58 tw)

uw Plan Independent Dom Set O(n21.89 bw) O(n2min{1.58 tw,1.89 bw})

w Plan Total Dom Set O(n2min{2.58 tw,3 bw}) O(n22 tw)

uw Plan Total Dom Set O(n22.38 bw) O(n2min{2 tw,2.38 bw})

w Plan Perf Total Dom Set O(n2min{2.58 tw,3.16 bw}) O(n2min{2.32 tw,3.16 bw})

uw Plan Perf Total Dom Set O(n22.53 bw) O(n2min{2.32 tw,2.53 bw})

w Planar Ham Cycle O(n23.31 bw) O(n2min{2.58 tw,3.31 bw})

uw Planar Ham Cycle O(n22.66 bw) O(n2min{2.58 tw,2.66 bw})

started to become a more popular tool than tree-decompositions, in particular
for problems whose input is a topologically embedded graph [10,19,11,16,15],
mainly for two reason: the branchwidth of planar graphs can be computed in
polynomial time (yet there is no algorithm known for treewidth) with better
constants for the upper bound than treewidth. Secondly, planar branch decom-
positions have geometrical properties, i.e. they are assigned with separators that
form Jordan curves. Thus, one can exploit planarity in the dynamic program-
ming approach in order to get an exponential speedup, as done by [16,13]. We
give the first result which employs planarity obtained by the structure of tree-
decompositions for getting faster algorithms. This enables us to give the first
tree-decomposition based algorithms for planar Hamiltonian-like problems with
slight runtime improvements compared to [16]. We emphasize our result in terms
of the width parameters tw and bw with the example of Dominating Set. The
graph problem Dominating Set asks for a minimum vertex set S in a graph
G = (V, E) such that every vertex in V is either in S or has a neighbor in S. Telle
and Proskurowski [30] gave a dynamic programming approach based on tree-
decompositions with runtime 9tw · nO(1), and that was improved to 4tw · nO(1)

by Alber et al [1]. Note that in the extended abstract [2], the same authors
first stated the runtime wrongly to be 3tw · nO(1). Fomin and Thilikos [19] gave
a branch-decomposition based approach of runtime 31.5 bw · nO(1). In [13], the
author combined dynamic programming with fast matrix multiplication to get
4bw ·nO(1) and for Planar Dominating Set even 3

ω
2 bw ·nO(1), where ω is the

constant in the exponent of fast matrix multiplication (currently, ω ≤ 2.376).
Exploiting planarity, we improve further upon the existing bounds and give a
3tw ·nO(1) algorithm for Planar Dominating Set, representative for a number
of improvements on results of [3,16,17] as shown in Table 1.
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Given any tree-decomposition as an input, we show how to compute a geo-
metric tree-decomposition that has the same properties as planar branch decom-
positions. Employing structural results on minimal graph separators for planar
graphs, we create in polynomial time a parallel tree-decomposition that is as-
signed by a set of pairwise parallel separators that form pairwise non-crossing
Jordan curves in the plane. In a second step, we show how to obtain a geometric
tree-decomposition, that has a ternary tree and is assigned Jordan curves that
exhaustively decompose the plane into disks (one disk being the infinite disk).
In fact, geometric tree-decompositions have all the properties in common with
planar branch decompositions, that are algorithmically exploited in [19] and [16].

Organization of the paper: after giving some preliminary results in Sec-
tion 2, we introduce in Section 3 our algorithm to compute a parallel tree-
decomposition. In Section 4, we describe how Jordan curves and separators in
plane graphs influence each other and we get some tools for relating Jordan
curves and tree-decompositions in Section 5. Finally, we show how to compute
geometric tree-decompositions and state in Section 6 their influence on dynamic
programming approaches. In Section 7, we argue how our results may lead to
faster algorithms when using fast matrix multiplication as in [13].

2 Preliminaries

A line is a subset of a surface Σ that is homeomorphic to [0, 1]. A closed curve
on Σ that is homeomorphic to a cycle is called Jordan curve. A planar graph
embedded crossing-free onto the sphere S0 is defined as a plane graph, where
every vertex is a point of S0 and each edge a line. In this paper, we consider
Jordan curves that intersect with a plane graph only in vertices. For a Jordan
curve J , we denote by V (J) the vertices J intersects with.

Given a connected graph G = (V, E), a set of vertices S ⊂ V is called a
separator if the subgraph induced by V \S is non-empty and has several compo-
nents. S is called an u, v-separator for two vertices u and v that are in different
components of G[V \S]. S is a minimal u, v-separator if no proper subset of S is
a u, v-separator. Finally, S is a minimal separator of G if there are two vertices
u, v such that S is a minimal u, v-separator. For a vertex subset A ⊆ V , we
saturate A by adding edges between every two non-adjacent vertices, and thus,
turning A into a clique.

A chord in a cycle C of a graph G is an edge joining two non-consecutive
vertices of C. A graph H is called chordal if every cycle of length > 3 has a
chord. A triangulation of a graph G = (V, E) is a chordal graph H = (V, E′)
with E ⊆ E′. The edges of E′ \ E are called fill edges. We say, H is a minimal
triangulation of G if every graph G′ = (V, E′′) with E ⊆ E′′ ⊂ E′ is not chordal.
Note that a triangulation of a planar graph may not be planar—not to confuse
with the notion of “planar triangulation” that asks for filling the facial cycles
with chords. Consider the following algorithm on a graph G that triangulates
G, known as the elimination game [26]. Repeatedly choose a vertex, saturate
its neighborhood, and delete it. Terminate when V = ∅. The order in which
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the vertices are deleted is called the elimination ordering α, and G+
α is the

chordal graph obtained by adding all saturating (fill) edges to G. Another way
of triangulating a graph G can be obtained by using a tree-decomposition of G.

2.1 Tree-Decompositions

Let G be a graph, T a tree, and let Z = (Zt)t∈T be a family of vertex sets
Zt ⊆ V (G), called bags, indexed by the nodes of T . The pair T = (T, Z) is
called a tree-decomposition of G if it satisfies the following three conditions:

• V (G) = ∪t∈T Zt,
• for every edge e ∈ E(G) there exists a t ∈ T such that both ends of e are in Zt,
• Zt1 ∩Zt3 ⊆ Zt2 whenever t2 is a vertex of the path connecting t1 and t3 in T .

The width tw(T ) of the tree-decomposition T = (T, Z) is the maximum size
over all bags minus one. The treewidth of G is the minimum width over all
tree-decompositions.

Lemma 1. [8] Let T = (T, Z), Z = (Zt)t∈T be a tree-decomposition of G =
(V, E), and let K ⊆ V be a clique in G. Then there exists a node t ∈ T with
K ⊆ Zt.

As a consequence, we can turn a graph G into another graph H ′ by saturating
the bags of a tree-decomposition, i.e., add an edge in G between any two non-
adjacent vertices that appear in a common bag. Automatically, we get that for
every clique K in H ′, there exists a bag Zt such that K = Zt. Note that the
width of the tree-decomposition is not changed by this operation. It is known
(e.g. in [31]) that H ′ is a triangulation of G, actually a so-called k-tree. Although
there exist triangulations that cannot be computed from G with the elimination
game, van Leeuwen [31] describes how to change a tree-decomposition in order
to obtain the elimination ordering α and thus G+

α = H ′. For finding a minimal
triangulation H that is a super-graph of G and a subgraph of G+

α , known as
the sandwich problem, there are efficient O(nm) runtime algorithms (For a nice
survey, we refer to [21]).

2.2 Minimal Separators and Triangulations

We want to use triangulations for computing tree-decompositions with “nice”
separating properties. By Rose et al [28], we have also the following lemma:

Lemma 2. Let H be a minimal triangulation of G. Any minimal separator of
H is a minimal separator of G.

Before we give our new tree-decomposition algorithm, we are interested in an
additional property of minimal separators. Let SG be the set of all minimal
separators in G. Let S1, S2 ∈ SG. We say that S1 crosses S2, denoted by S1#S2,
if there are two connected components C, D ∈ G \ S2, such that S1 intersects
both C and D. Note that S1#S2 implies S2#S1. If S1 does not cross S2, we
say that S1 is parallel to S2, denoted by S1||S2. Note that “||” is an equivalence
relation on a set of pairwise parallel separators.
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Theorem 1. [25] Let H be a minimal triangulation of G. Then, SH is a max-
imal set of pairwise parallel minimal separators in G.

3 Algorithm for a New Tree-Decomposition

Before we give the whole algorithm, we need some more definitions. For a graph
G, let K be the set of maximal cliques, that is, the cliques that have no superset
in V (G) that forms a clique in G. Let Kv be the set of all maximal cliques of
G that contain the vertex v ∈ V (G).For a chordal graph H we define a clique
tree as a tree T = (K, E) whose vertex set is the set of maximal cliques in H ,
and T [Kv] forms a connected subtree for each vertex v ∈ V (H). Vice versa, if
a graph H has a clique tree, then H is chordal (see [20]). Even though finding
all maximal cliques of a graph is NP-hard in general, there exists a linear time
modified algorithm of [29], that exploits the property of chordal graphs having
at most |V (H)| maximal cliques. By definition, a clique tree of H is also a tree-
decomposition of H (where the opposite is not necessarily true).

Due to [5], a clique tree of a chordal graph H is the maximum weight spanning
tree of the intersection graph of maximal cliques of H , and we obtain a linear
time algorithm computing the clique tree of a graph H . It follows immediately
from Lemma 1 that the treewidth of any chordal graph H equals the size of the
largest clique. Let us define an edge (Ci, Cj) in a clique tree T to be equivalent
to the set of vertices Ci ∩ Cj of the two cliques Ci, Cj in H which correspond to
the endpoints of the edge in T . For us, the most interesting property of clique
trees is given by [22]:

Theorem 2. Given a chordal graph H and some clique tree T of H, a set of
vertices S is a minimal separator of H if and only if S = Ci ∩ Cj for an edge
(Ci, Cj) in T .

We get our lemma following from Theorem 1 and Theorem 2:

Lemma 3. Given a clique tree T = (K, E) of a minimal triangulation H of a
graph G. Then, T is a tree-decomposition T of G, where tw(T ) = tw(H), and the

Algorithm TransfTD
Input: Graph G with tree-decomposition T = (T, Z), Z = (Zt)t∈T .
Output: Parallel tree-decomposition T ′ of G with tw(T ′) ≤ tw(T ).

Triangulation step:
Saturate every bag Zt, t ∈ T to
obtain the chordal graph H ′, E(H ′) = E(G) ∪ F with fill edges F .

Minimal triangulation step:
Compute a minimal triangulation H of G, E(H) = E(G) ∪ F ′, F ′ ⊆ F .

Clique tree step:
Compute clique tree of H , being simultaneously a tree-decomposition T ′ of G.

Fig. 1. Algorithm TransfTD
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set of all edges (Ci, Cj) in T forms a maximal set of pairwise parallel minimal
separators in G.

We call such a tree-decomposition of G parallel . We give the algorithm in
Figure 1.

The worst case analysis for the runtime of TransfTD comes from the Minimal
triangulation step, that needs time O(nm) for an input graph G, (|V (G)| = n,
|E(G)| = m).

4 Plane Graphs and Minimal Separators

In the remainder of the paper, we consider 2-connected plane graphs G. Let
V (J) ⊆ V (G) be the set of vertices which are intersected by Jordan curve J .
We say that a Jordan curve J is minimal, if no proper subset VA of V (J) with
|VA| > 2 forms a Jordan curve. The Jordan curve theorem (e.g. see [12]) states
that a Jordan curve J on a sphere S0 divides the rest of S0 into two connected
parts, namely into two open discs ΔJ and ΔJ , i.e., ΔJ∪ΔJ ∪J = S0. Hence, every
Jordan curve J is a separator of a plane graph G if both ΔJ ∩G and ΔJ ∩G are
nonempty. Two Jordan curves J, J ′ then divide S0 into several regions. We define
V +

J,J′ as the (possibly empty) subset of vertices of V (J ∩ J ′) that are incident to
more than two regions. For two Jordan curves J, J ′, we define JΔJ ′ to be the
symmetric difference of J and J ′, and V (JΔJ ′) = V (J ∪ J ′) \ V (J ∩ J ′) ∪ V +

J,J′ .
Bouchitté et al [9] use results of [18] to show the following:

Lemma 4. [9] Every minimal separator S of a 2-connected plane graph G forms
the vertices of a Jordan curve.

That is, in any crossing-free embedding of G in S0, one can find a Jordan curve
only intersecting with G in the vertices of S. Note that a minimal separator S
is not necessarily forming a unique Jordan curve. If an induced subgraph G′ of
G (possibly a single edge) has only two vertices u, v in common with S, and u, v
are successive vertices of the Jordan curve J , then G′ can be drawn on either
side of J . This is the only freedom we have to form a Jordan curve in G, since
on both sides of J , there is a connected subgraph of G that is adjacent to all
vertices of J . We call two Jordan curves J, J ′ equivalent if they share the same
vertex set and intersect the vertices in the same order. Two Jordan curves J, J ′

cross if J and J ′ are not equivalent and there are vertices v, w ∈ V (J ′) such
that v ∈ V (G) ∩ ΔJ and w ∈ V (G) ∩ ΔJ . The proofs of the following lemmata
can be found in [14].

Lemma 5. Let S1, S2 be two minimal separators of a 2-connected plane graph
G and each Si forms a Jordan curve Ji, i = 1, 2. If S1||S2, then J1, J2 are non-
crossing. Vice versa, if two minimal Jordan curves J1, J2 in G are non-crossing
and ΔJi ∩ V (G) and ΔJi

∩ V (G), (i = 1, 2) all are non-empty, then the vertex
sets Si = V (Ji), (i = 1, 2) are parallel minimal separators.
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We say that two non-crossing Jordan curves J1, J2 touch if they intersect in a
non-empty vertex set. Note that there may exist two edges e, f ∈ E(G) ∩ ΔJ1

such that e ∈ E(G) ∩ ΔJ2 and f ∈ E(G) ∩ ΔJ2
.

Lemma 6. Let two non-crossing Jordan curves J1, J2 be formed by two minimal
parallel separators S1, S2 of a 2-connected plane graph G. If J1 and J2 touch,
and there exists a Jordan curve J3 ⊆ J1ΔJ2 such that there are vertices of G on
both sides of J3, then the vertices of J3 form another minimal separator S3 that
is parallel to S1 and S2.

If J1ΔJ2 forms exactly one Jordan curve J3 then we say that J1 touches J2
nicely. Note that if J1 and J2 only touch in one vertex, the vertices of J1ΔJ2
may not form any Jordan curve. The following lemma gives a property of “nicely
touching”that we need later on.

Lemma 7. If in a 2-connected plane graph G, two non-crossing Jordan curves
J1 and J2 touch nicely, then |V +

J1,J2
| = |V (J1) ∩ V (J2) ∩ V (J1ΔJ2)| ≤ 2.

5 Jordan Curves and Geometric Tree-Decompositions

We now want to turn a parallel tree-decomposition T into a geometric tree-
decomposition T ′ = (T, Z), Z = (Zt)t∈T where T is a ternary tree and for
every two adjacent edges (Zr, Zs) and (Zr, Zt) in T , the minimal separators
S1 = Zr ∩ Zs and S2 = Zr ∩ Zt form two Jordan curves J1, J2 that touch each
other nicely. Unfortunately, we cannot arbitrarily connect two Jordan curves
J, J ′ that we obtain from the parallel tree-decomposition T —even if they touch
nicely, since the symmetric difference of J, J ′ may have more vertices than tw(T ).
With carefully chosen arguments, one can deduce from [9] that for 3-connected
planar graphs parallel tree-decompositions are geometric. However, we give a
direct proof that enables us to find geometric tree-decompositions for all planar
graphs.

For a vertex set Z ⊆ V (G), we define the subset ∂Z ⊆ Z to be the vertices
adjacent in G to some vertices in V (G) \ Z. Let G be planar embedded, Z
connected, and ∂Z form a Jordan curve. We define ΔZ to be the closed disk,
onto which Z is embedded and ΔZ the open disk with the embedding of Z
without the vertices of ∂Z. For a non-leaf tree node X with degree d in a parallel
tree-decomposition T , let Y1, . . . Yd be its neighbors. Let TYi be the subtree
including Yi when removing the edge (Yi, X) from T . We define GYi ⊆ G to be
the subgraph induced by the vertices of all bags in TYi . For Yi, choose the Jordan
curve Ji formed by the vertex set ∂GYi = Yi ∩X to be the Jordan curve that has
all vertices of GYi on one side and V (G) \ V (GYi) on the other. For each edge e
with both endpoints being consecutive vertices of Ji we choose if e ∈ E(GYi ) or
if e ∈ E(G) \ E(GYi ).

We say that a set J of non-crossing Jordan curves is connected if for every
partition of J into two subsets J1, J2, there is at least one Jordan curve of J1
that touches a Jordan curve of J2. A set J of Jordan curves is k-connected if
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for every partition of J into two connected sets J1, J2, the Jordan curves of J1
touch the Jordan curves of J2 in at least k vertices. Note that if two Jordan
curves touch nicely then they intersect in at least two vertices. For a proof of
the following lemma, please consult [14].

Lemma 8. For every inner node X of a parallel tree-decomposition T of a 2-
connected plane graph, the collection JX of pairwise non-crossing Jordan curves
formed by ∂X is 2-connected.

Lemma 9. Every bag X in a parallel tree-decomposition T can be decomposed
into X1, . . . , X� such that each vertex set ∂Xi forms a Jordan curve in G and
⋃�

i=1 ∂Xi = ∂X.

Proof. Let Y1, . . . , Yd be the neighbors of X . By Lemma 8, ∂X forms a 2-
connected set of Jordan curves, each bounding a disk inside which one of the
subgraphs GYj is embedded onto. If we remove the disks ΔYj for all 1 ≤ j ≤ d
and the set of Jordan curves JX from the sphere, we obtain a collection DX

of � disjoint open disks each bounded by a Jordan curve of JX . Note that
� ≤ max{d, |X |}. Let Zi be the subgraph in X ∩ Δi for such an open disk
Δi ∈ DX for 1 ≤ i ≤ �. Then each Zi is either empty or consisting only of
edges or subgraphs of G and the closed disk Δi is bounded by a Jordan curve Ji

formed by a subset of ∂X . We set Xi = Zi ∪ V (Ji) with ∂Xi the vertices of Ji.

Lemma 10. In a decomposition of the sphere S0 by a 2-connected collection
J of non-crossing Jordan curves, one can repeatedly find two Jordan curves
J1, J2 ∈ J that touch nicely, and substitute J1 and J2 by J1ΔJ2 in J .

Proof. Removing J from S0 decomposes S0 into a collection D of open discs each
bounded by a Jordan curve in J . For each Δ1 ∈ D bounded by J1 ∈ J there
is a “neighboring” disk Δ2 ∈ D bounded by J2 ∈ J such that the intersection
J1 ∩ J2 forms a line of S0. Then, J1ΔJ2 bounds Δ1 ∪ Δ2. Replace, J1, J2 by
J3 in J and continue until |J | = 1, that is, we are left with one Jordan curve
separating S0 into two open disks.

We get that X1, . . .X� and GY1 , . . . , GYd
are embedded inside of closed disks each

bounded by a Jordan curve. Thus, the union D over all these disks together with
the Jordan curves JX fill the entire sphere S0 onto which G is embedded. Each
subgraph embedded onto Δ∪J for a disk Δ ∈ D and a Jordan curve J bounding
Δ, forms either a bag Xi or a subgraph GYj . Define the collection of bags ZX =
{X1, . . . X�, Y1, . . . , Yd}. In Figure 2, we give the algorithm TransfTD II for
creating a geometric tree-decomposition using the idea of Lemma 6.

Since by Lemma 7, |V (∂Zi ∩ ∂Zj ∩ ∂Zij)| ≤ 2, we have that at most two ver-
tices in all three bags are contained in any other bag of ZX . Note that geometric
tree-decompositions have a lot in common with sphere-cut decompositions (in-
troduced in [16]), namely that both decompositions are assigned with vertex sets
that form “sphere-cutting” Jordan curves. For our new dynamic programming
algorithm, we use much of the structure results obtained in Subsection [16].
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Algorithm TransfTD II
Input: Graph G with parallel tree-decomposition T = (T, Z), Z = (Zt)t∈T .
Output: Geometric tree-decomposition T ′ of G with tw(T ′) ≤ tw(T ).

For each inner bag X with neighbors Y1, . . . , Yd {
Disconnection step: Replace X by X1, . . . X� (Lemma 9).

Set ZX = {X1, . . . X�, Y1, . . . , Yd}.
Reconnection step: Until |ZX | = 1 {

Find two bags Zi and Zj in ZX such that Jordan curve JiΔJj

bounds a disk with Zi ∪ Zj (Lemma 10);
Set Zij = (ZiΔZj) ∪ (Zi ∩ Zj) and connect Zi and Zj to Zij ;

In ZX : substitute Zi and Zj by Zij . }}

Fig. 2. Algorithm TransfTD II

6 Jordan Curves and Dynamic Programming

The following techniques improve the existing algorithm of Alber et al [1] for
weighted Planar Dominating Set. Their algorithm is based on dynamic pro-
gramming on nice tree-decompositions T and has the running time 4tw(T ) ·nO(1).
We prove the following theorem by giving an algorithm of similar structure to
those in [16] and [19]. Thus, we give here only a sketch of the idea. Namely, to
exploit the planar structure of the nicely touching separators to improve upon
the runtime.

Theorem 3. Given a geometric tree-decomposition T = (T, Z), Z = (Zt)t∈T of
a planar graph G. Weighted Planar Dominating Set on G can be solved in
time 3tw(T ) · nO(1).

Proof. We root T by arbitrarily choosing a node r as a root. Each internal node t
of T now has one adjacent node on the path from t to r, called the parent node,
and two adjacent nodes toward the leaves, called the children nodes. To simplify
matters, we call them the left child and the right child.

Let Tt be a subtree of T rooted at node t. Gt is the subgraph of G induced
by all bags of Tt. For a subset U of V (G) let w(U) denote the total weight of
vertices in U . That is, w(U) =

∑

u∈U wu. Define a set of subproblems for each
subtree Tt.

Alber et al. [1] introduced the “monotonicity”-property of domination-like
problems for their dynamic programming approach that we will use, too. For
every node t ∈ T , we use three colors for the vertices of bag Zt:

black: Represented by 1, meaning the vertex is in the dominating set.
white: Represented by 0, meaning the vertex has a neighbor in Gt that is in the
dominating set.
gray: Represented by 2, meaning the vertex has a neighbor in G that is in the
dominating set.
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For a bag Zt of cardinality �, we define a coloring c(Zt) to be a mapping of the
vertices Zt to an �-vector over the color-set {0, 1, 2} such that each vertex u ∈ Zt

is assigned a color, i.e., c(u) ∈ {0, 1, 2}. We further define the weight w(c(Zt)) to
be the minimum weight of the vertices of Gt in the minimum weight dominating
set with respect to the coloring c(Zt). If no such dominating set exists, we set
w(c(Zt)) = +∞. We store all colorings of Zt, and for two child nodes, we update
each two colorings to one of the parent node.

Before we describe the updating process of the bags, let us make the following
comments:

We defined the color “gray” according to the monotonicity property: for a
vertex u colored gray, we do not have (or store) the information if u is already
dominated by a vertex in Gt or if u still has to be dominated in G \ Gt. Thus,
a solution with a vertex v colored white has at least the same the weight as the
same solution with v colored gray.

By the definition of bags, for three adjacent nodes r, s, t, the vertices of ∂Zr

have to be in at least on of ∂Zs and ∂Zt. The reader may simply recall that the
parent bag is formed by the union of the vertices of two nicely touching Jordan
curves.

For the sake of a refined analysis, we partition the bags of parent node r and
left child s and right child t into four sets L, R, F, I as follows:

• Intersection I := ∂Zr ∩ ∂Zs ∩ ∂Zt,
• Forget F := (Zs ∪ Zt) \ ∂Zr,
• Symmetric difference L := ∂Zr ∩ ∂Zs \ I and R := ∂Zr ∩ ∂Zt \ I.

We define F ′ to be actually those vertices of F that are only in (∂Zs ∪ ∂Zt) \
∂Zr. The vertices of F \ F ′ do not exist in Zr and hence are irrelevant for
the continuous update process. We say that a coloring c(Zr) is formed by the
colorings c1(Zs) and c2(Zt) subject to the following rules:

(R1) For every vertex u ∈ L ∪ R : c(u) = c1(u) and c(u) = c2(u), respectively.
(R2) For every vertex u ∈ F ′ either c(u) = c1(u) = c2(u) = 1 or c(u) =
0 ∧ c1(u), c2(u) ∈ {0, 2} ∧ c1(u) �= c2(u).
(R3) For every vertex u ∈ I c(u) ∈ {1, 2} ⇒ c(u) = c1(u) = c2(u) and c(u) =
0 ⇒ c1(u), c2(u) ∈ {0, 2} ∧ c1(u) �= c2(u).

We define Uc to be the vertices u ∈ Zs ∩ Zt for which c(u) = 1 and update
the weights by: w(c(Zr)) = min{w(c1(Zs)) + w(c2(Zt)) − w(Uc)|c1, c2 forms c}.

The number of steps by which w(c(Zr)) is computed for every possible coloring
of Zr is given by the number of ways a color c can be formed by the three rules
(R1), (R2), (R3), i.e., 3|L|+|R| · 3|F

′| · 4|I| steps.
By Lemma 7, |I| ≤ 2 and since |L| + |R| + |F | ≤ tw(T ), we need at most

3tw(T ) ·n steps to compute all weights w(c(Zr)) that are usually stored in a table
assigned to bag Zr.

In [1], the worst case in the runtime for Planar Dominating Set is deter-
mined by the number of vertices that are in the intersection of three adjacent
bags r, s, t. Using the notion of [16] for a geometric tree-decomposition, we par-
tition the vertex sets of three bags Zr, Zs, Zt into sets L, R, F, I, where Zr is
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adjacent to Zs, Zt. The sets L, R, F represent the vertices that are in exactly
two of the bags. Let us consider the Intersection set I := ∂Zr ∩ ∂Zs ∩ ∂Zt. By
Lemma 7, |I| ≤ 2. Thus, I is not any more part of the runtime.

7 Conclusion

A natural question to pose, is it possible to solve Planar Dominating Set in
time 2.99tw(T ) ·nO(1) and equivalently, Planar Independent Set in 1.99tw(T ) ·
nO(1)? Though, we cannot give a positive answer yet, we have a formula that
needs “well-balanced” separators in a geometric tree-decomposition T : we as-
sume that the three sets L, R, F are of equal cardinality for every three adjacent
bags. Since |L| + |R| + |F | ≤ tw, we thus have that |L|, |R|, |F | ≤ tw

3 . Applying
the fast matrix multiplication method from [13] for example to Planar In-

dependent Set, this leads to a 2
ω
3 tw(T ) · nO(1) algorithm, where ω < 2.376.

Does every planar graph have a geometric tree-decomposition with well-balanced
separators?

Acknowledgments. The author thanks Frédéric Mazoit for some enlightening
discussion on Theorem 1.
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Abstract. In the Planar +k vertex problem the task is to find at
most k vertices whose deletion makes the given graph planar. The graphs
for which there exists a solution form a minor closed class of graphs, hence
by the deep results of Robertson and Seymour [19,18], there is an O(n3)
time algorithm for every fixed value of k. However, the proof is extremely
complicated and the constants hidden by the big-O notation are huge.
Here we give a much simpler algorithm for this problem with quadratic
running time, by iteratively reducing the input graph and then applying
techniques for graphs of bounded treewidth.

1 Introduction

Planar graphs are subject of wide research interest in graph theory. There
are many generally hard problems which can be solved in polynomial time
when considering planar graphs, e.g., Maximum Clique, Maximum Cut, and
Subgraph Isomorphism [8,12]. For problems that remain NP-hard on pla-
nar graphs, we often have efficient approximation algorithms. For example, the
problems Independent Set, Vertex Cover, and Dominating Set admit an
efficient polynomial time approximation scheme (EPTAS) [1,15]. The research
for efficient algorithms for problems on planar graphs is still very intensive.

Many results on planar graphs can be extended to almost planar graphs,
which can be defined in various ways. For example, we can consider possible
embeddings of a graph in a surface other than the plane. The genus of a graph is
the minimum number of handles that must be added to the plane to embed the
graph without any crossings. Although determining the genus of a graph is NP-
hard [20], the graphs with bounded genus are subjects of wide research. A similar
property of graphs is their crossing number, i.e., the minimum possible number of
crossings with which the graph can be drawn in the plane. Determining crossing
number is also NP-hard [10].

In [3] Cai introduced another notation, based on the number of certain ele-
mentary modification steps. He defines the distance of a graph G from a graph
class F as the minimum number of modifying steps needed to make G a member
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of F . Here modification can mean the deletion or addition of edges or vertices.
In this paper we consider the following question: given a graph G and an integer
k, is there a set of at most k vertices in G, whose deletion makes G planar?

Since this problem was proved to be NP-hard in [14], we cannot hope to
find a polynomial-time algorithm for it. Therefore, we study the problem in the
framework of parameterized complexity [7]. This approach deals with problems in
which besides the input I an integer k is also given. The integer k is referred to as
the parameter. In many cases we can solve the problem in time O(nf(k)). Clearly,
this is also true for the problem we consider. Although this is polynomial time
for each fixed k, these algorithms are practically too slow for large inputs, even
if k is relatively small. Therefore, the standard goal of parameterized analysis
is to take the parameter out of the exponent in the running time. A problem is
called fixed-parameter tractable (FPT) if it can be solved in time O(f(k)p(|I|)),
where p is a polynomial not depending on k, and f is an arbitrary function. An
algorithm with such a running time is also called FPT.

The standard parameterized version of our problem is the following: given a
graph G and a parameter k, the task is to decide whether deleting at most k
vertices from G can result in a planar graph. Following Cai [3], we will denote
the class of graphs for which the answer is ’yes’ by Planar + kv. This family
of graphs is closed under taking minors, so thanks to the results of Robertson
and Seymour [19,18], we know that there exists an algorithm with running time
O(f(k)n3) which can decide membership for this class. However, this result is
inherently non-constructive, and so far there is no direct FPT algorithm known
for this problem. In this paper we present an algorithm, which solves the question
in O(f(k)n2) time. The algorithm also returns a solution, i.e., a set of at most
k vertices whose deletion from G results in a planar graph.

Our algorithm is strongly based on the ideas used by Grohe in [11] for com-
puting crossing number. Grohe uses the fact that the crossing number of a graph
is an upper bound for its genus. Since the genus of a graph in Planar+kv cannot
be bounded by a function of k, we need some other ideas. As in [11], we exploit
the fact that in a graph with large treewidth we can always find a large grid
minor [17]. Examining the structure of the graph with such a grid minor, we can
reduce our problem to a smaller instance. Applying this reduction several times,
we finally get an instance with bounded treewidth. Then we make use of Cour-
celle’s Theorem [4], which states that every graph property that is expressible in
monadic second-order logic can be decided in linear time on graphs of bounded
treewidth.

The paper is organized as follows. Section 2 summarizes our notation, Sect. 3
outlines the algorithm, Sect. 4 and 5 describe the two phases of the algorithm.

2 Notation

Graphs in this paper are assumed to be simple, since both loops and multiple
edges are irrelevant in the Planar + k vertex problem. The vertex set and
edge set of a graph G are denoted by V (G) and E(G), respectively. The edges of
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Fig. 1. The hexagonal grids H1, H2, and H3

a graph are unordered pairs of its vertices. If G′ is a subgraph of G then G − G′

denotes the graph obtained by deleting G′ from G. For a set of vertices S in G,
we will also use G − S to denote the graph obtained by deleting S from G.

A graph H is a minor of a graph G if it can be obtained from a subgraph of
G by contracting some of its edges. Here contracting an edge e with endpoints
a and b means deleting e, and then identifying vertices a and b.

A graph H is a subdivision of a graph G if G can be obtained from H by
contracting some of its edges that have at least one endpoint of degree 2. A
graph H is a topological minor of G if G has a subgraph that is a subdivision
of H . G and G′ are topologically isomorphic if they both are subdivisions of a
graph H . If G is a subdivision of H , then an edge-path of G with respect to H
is a path of G corresponding to exactly one edge of H in the natural way (i.e., a
path with inner points only of degree 2, whose vertices are all identified with an
endpoint of a certain edge when obtaining H from G as a topological minor).

The g × g grid is the graph Gg×g where V (Gg×g) = {vij | 1 ≤ i, j ≤ g} and
E(Gg×g) = {vijvi′j′ | |i − i′| + |j − j′| = 1}.

Instead of giving a formal definition for the hexagonal grid of radius r, which
we will denote by Hr, we refer to the illustration shown in Fig. 1. A cell of a
hexagonal grid is one of its cycles of length 6.

A tree decomposition of a graph G is a pair (T, (Vt)t∈V (T )) where T is a tree,
Vt ⊆ V (G) for all t ∈ V (T ), and the following are true:

– for all v ∈ V (G) there exists a t ∈ V (T ) such that v ∈ Vt,
– for all xy ∈ E(G) there exists a t ∈ V (T ) such that x, y ∈ Vt,
– if t lies on the path connecting t′ and t′′ in T , then Vt ⊇ Vt′ ∩ Vt′′ .

The width of such a tree decomposition is the maximum of |Vt|−1 taken over
all t ∈ V (T ). The treewidth of a graph G is the smallest possible width of a tree
decomposition of G.

3 Problem Definition and Overview of the Algorithm

We are looking for the solution of the following problem:
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Planar + k vertex problem:
Input: A graph G = (V, E) and an integer k.
Task: Find a set X of at most k vertices in V such that G − X is

planar.

Here we give an algorithm A which solves this problem in time O(f(k)n2) for
some function f , where n is the number of vertices in the input graph. Algorithm
A works in two phases. In the first phase (Sect. 4) we compress the given graph
repeatedly, and finally either conclude that there is no solution for our prob-
lem or construct an equivalent problem instance with a graph having bounded
treewidth. In the latter case we solve the problem in the second phase of the
algorithm (Sect. 5) by applying Courcelle’s Theorem concerning the evaluation
of MSO-formulae on bounded treewidth graphs.

According to [17,2,16] we know that there is a linear-time algorithm which
can solve the following problem, for fixed integers w and r:

Input: A graph G.
Task: If tw(G) ≤ w then find a tree decomposition of width w, or if

tw(G) > w then find an r × r grid minor in G if there is one.

It is a well-known fact that if a graph of maximum degree 3 is a minor of
another graph, then it is also contained in it as a topological minor. Hence,
it will be convenient to work with hexagonal grids instead of grids. Since a
hexagonal grid with radius i is a subgraph of the (4i − 1) × (4i− 1) grid, we can
conclude that for each fixed w and r there is a linear-time algorithm that solves
the following modified version of the above problem:

Input: A graph G.
Task: If tw(G) ≤ w then find a tree decomposition of width w, or if

tw(G) > w then find a subdivision of Hr in G if there is one.

According to [17] every planar graph with no minor isomorphic to the r × r
grid has treewidth ≤ 6r−5. Therefore, it is also true that every planar graph with
no minor isomorphic to Hr has treewidth ≤ 6(4r−1)−5 = 24r−11. But adding
k vertices to a graph can increase the treewidth of the graph only by at most k,
so if G ∈ Planar + kv and Hr is not a minor of G, then tw(G) ≤ 24r − 11 + k.
We can summarize this in the following simple claim.

Lemma 1. For arbitrary integers r and k there is a linear-time algorithm B,
which can be run with input graph G, and does the following:

– it either produces a tree decomposition of G of width w(r) = 24r −11+k, or
– finds a subdivision of Hr in G, or
– correctly concludes that G /∈ Planar + kv.

In algorithm A we will run B several times. As long as we get a hexagonal grid
of radius r as topological minor as a result, we will run Phase I of algorithm
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A, which compresses the graph G. If at some step algorithm B gives us a tree
decomposition of width w(r), we run Phase II. (The constant r will be fixed
later.) And of course if at some step B finds out that G /∈ Planar + kv, then
algorithm A can stop with the output ”No solution.”

Clearly, we can assume without loss of generality that the input graph is
simple, and it has at least k + 3 vertices. So if G ∈ Planar + kv, then deleting
k vertices from G (which means the deletion of at most k(|V (G)| − 1) edges)
results in a planar graph, which has at most 3|V (G)| − 6 edges. Therefore, if
|E(G)| > (k + 3)|V (G)| then surely G /∈ Planar+ kv. Since this can be detected
in linear time, we can assume that |E(G)| ≤ (k + 3)|V (G)|.

4 Phase I of Algorithm A

In Phase I we assume that after running B on G we get a subgraph H ′
r that is

a subdivision of Hr. Our goal is to find a set of vertices X such that G − X is
planar, and |X | ≤ k. Let PlanarDel(G, k) denote the family of sets of vertices
that have these properties, i.e., let PlanarDel(G, k) = {X ⊆ V (G) | |X | ≤ k and
G− X is planar}. Since the case k = 1 is very simple we can assume that k > 1.

Reduction A: Flat zones. In the following we regard the grid H ′
r as a fixed

subgraph of G. Let us define z zones in it. Here z is a constant depending
only on k, which we will determine later. A zone is a subgraph of H ′

r which is
topologically isomorphic to the hexagonal grid H2k+5. We place such zones next
to each other in the well-known radial manner with radius q, i.e., we replace each
hexagon of Hq with a subdivision of H2k+5. It is easy to show that in a hexagonal
grid with radius (q − 1)(4k + 9) + (2k + 5) we can define this way 3q(q − 1) + 1
zones that only intersect in their outer circles. So let r = (q−1)(4k+9)+(2k+5),
where we choose q big enough to get at least z zones, i.e., q is the smallest integer
such that 3q(q − 1) + 1 ≥ z. Let the subgraph of these z zones in H ′

r be R.
Let us define two types of grid-components. An edge which is not contained

in R is a grid-component if it connects two vertices of R. A subgraph of G is
a grid-component if it is a (maximal) connected component of G − R. A grid-
component K is attached to a vertex v of the grid R if it has a vertex adjacent
to v, or (if K is an edge) one of its endpoints is v. The core of a zone is the
(unique) subgraph of the zone which is topologically isomorphic to H2k+3 and
lies in the middle of the zone. Let us call a zone Z open if there is a vertex in
its core that is connected to a vertex v of another zone, v /∈ V (Z), through a
grid-component. A zone is closed if it is not open.

For a subgraph H of R let T (H) denote the subgraph of G spanned by the
vertices of H and the vertices of the grid-components which are only attached
to H . Let us call a zone Z flat if it is closed and T (Z) is planar. Let Z be
such a flat zone. A grid-component is an edge-component if it is either only
attached to one edge-path of Z or only to one vertex of Z. Otherwise, it is a
cell-component if it is only attached to vertices of one cell. As a consequence of
the fact that all embeddings of a 3-connected graph are equivalent (see e.g. [6]),
and Z is a subdivision of such a graph, every grid-component attached to some
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vertex in the core of Z must be one of these two types. Note that we can assume
that in an embedding of T (Z) in the plane, all edge-components are embedded
in an arbitrarily small neighborhood of the edge-path (or vertex) which they
belong to.

Let us define the ring Ri (1 ≤ i ≤ 2k+4) as the union of those cells in Z that
have common vertices both with the i-th and the (i + 1)-th concentrical circle
of Z. Let R0 be the cell of Z that lies in its center. The zone Z can be viewed
as the union of 2k + 5 concentrical rings, i.e., the union of the subgraphs Ri for
0 ≤ i ≤ 2k + 4.

Lemma 2. Let Z be a flat zone in R, and let G′ denote the graph G − T (R0).
Then X ∈ PlanarDel(G′, k) implies X ∈ PlanarDel(G, k).

Proof. Since G − T (R0) − X is planar, we can fix a planar embedding φ of it.
If Ri ∩ X = ∅ for some i (2 ≤ i ≤ 2k + 2) then let Wi denote the maximal
subgraph of G − T (R0) − X for which φ(Wi) is in the region determined by
φ(Ri) (including Ri). If Ri ∩ X is not empty then let Wi be the empty graph.
Note that if 2 ≤ i ≤ 2k then Wi and Wi+2 are disjoint. Therefore, there exists
an index i for which Wi ∩ X = ∅ and Wi is not empty. Let us fix this i.

Let Qi denote T (
⋃i

j=0 Rj). We prove the lemma by giving an embedding for
G − X ′ where X ′ = X \ V (Qi−1). The region φ(Ri) divides the plane in two
other regions. We can assume that in the finite region only vertices of Qi−1
are embedded, so G − X ′ − (Qi−1 ∪ Wi) is entirely embedded in the infinite
region. Let U denote those vertices in Qi−1 which are adjacent to some vertex
in G−Qi−1. Observe that the restriction of φ to G−X ′ − (Qi−1 −U) has a face
whose boundary contains U .

Now let θ be a planar embedding of T (Z), and let us restrict θ to Qi−1. Note
that U only contains vertices which are either adjacent to some vertex in Ri or
are adjacent to cell-components belonging to a cell of Ri. But θ embeds Ri and
its cell-components also, and therefore the restriction of θ to Qi−1 results in a
face whose boundary contains U . Here we used also that Ri is a subdivision of
a 3-connected graph whose embeddings are equivalent.

Now it is easy to see that we can combine θ and φ in such a way that we embed
G−X ′−(Qi−1−U) according to φ and, similarly, Qi−1 according to θ, and then
”connect” them by identifying φ(u) and θ(u) for all u ∈ U . This gives the desired
embedding of G − X ′. Finally, we have to observe that X ′ ∈ PlanarDel(G, k)
implies X ∈ PlanarDel(G, k), since X ′ ⊆ X and |X | ≤ k. 
�

This lemma has a trivial but crucial consequence: X ∈ PlanarDel(G, k) if and
only if X ∈ PlanarDel(G − T (R0), k), so deleting T (R0) reduces our problem to
an equivalent instance. Let us denote this deletion as Reduction A.

Note that the closedness of a zone Z can be decided by a simple breadth first
search, which can also produce the graph T (Z). Planarity can also be tested in
linear time [13]. Therefore we can test whether a zone is flat, and if so, we can
apply Reduction A on it in linear time.

Later we will see that unless there are some easily recognizable vertices in
our graph which must be included in every solution, a flat zone can always be
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found (Lemma 7). This yields an easy way to handle graphs with large treewidth:
compressing our graph by repeatedly applying Reduction A we can reduce the
problem to an instance with bounded treewidth.

Reduction B: Well-attached vertices. A subgraph of R is a block if it is
topologically isomorphic to Hk+3. A vertex of a given block is called inner vertex
if it is not on the outer circle of the block.

Lemma 3. Let X ∈ PlanarDel(G, k). Let x and y be inner vertices of the dis-
joint blocks Bx and By, respectively. If P is an x − y path that (except its end-
points) doesn’t contain any vertex from Bx or By, then X must contain a vertex
from Bx, By or P .

Proof. Let Cx and Cy denote the outer circle of Bx and By, respectively. Let us
notice that since Bx and By are disjoint blocks, there exist at least k + 3 vertex
disjoint paths between their outer circles, which—apart from their endpoints—
do not contain vertices from Bx and By. Moreover, it is easy to see that these
paths can be defined in a way such that their endpoints that lie on Cx are on the
border of different cells of Bx. To see this, note that the number of cells which
lie on the border of a given block is 6k + 12.

At least three of these paths must be in G − X also. Since x can lie only on
the border of at most two cells having common vertices with Cx, we get that
there is a path P ′ in G − X whose endpoints are ax and ay (lying on Cx and
Cy, resp.), and there exist no cell of Bx whose border contains both ax and x.

Let us suppose that Bx ∪By ∪P is a subgraph of G−X . Since all embeddings
of a 3-connected planar graph are equivalent, we know that if we restrict an
arbitrary planar embedding of G − X to Bx, then all faces having x on their
border correspond to a cell in Bx. Since x and y are connected through P
and V (P ) ∩ V (Bx) = {x}, we get that y must be embedded in a region F
corresponding to a cell CF of Bx. But this implies that By must entirely be
embedded also in F .

Since V (P ′ − ax − ay) ∩ V (Bx) = ∅ and P ′ connects ax ∈ V (Bx) and ay ∈
V (By) we have that ay must lie on the border of F . But then CF is a cell of Bx

containing both ax and x on its border, which yields the contradiction. 
�

Using this lemma we can identify certain vertices that have to be deleted. Let x
be a well-attached vertex in G if there exist paths P1, P2, . . . , Pk+2 and disjoint
blocks B1, B2, . . . , Bk+2 such that Pi connects x with an inner vertex of Bi

(1 ≤ i ≤ k + 2), the inner vertices of Pi are not in R, and if i �= j then the only
common vertex of Pi and Pj is x.

Lemma 4. Let X ∈ PlanarDel(G, k). If x is well-attached then x ∈ X.

Proof. If x /∈ X , then after deleting X from G (which means deleting at most k
vertices) there would exist indices i and j such that no vertex from Pi, Pj , Bi,
and Bj was deleted. But then the disjoint blocks Bi and Bj were connected by
the path Pi − x − Pj , and by the previous lemma, this is a contradiction. 
�
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We can decide whether a vertex v is well-attached in time O(f ′(k)e) using stan-
dard flow techniques, where e = |E(G)|. This can be done by simply testing for
each possible set of k+2 disjoint blocks whether there exist the required disjoint
paths that lead from x to these blocks. Since the number of blocks in R depends
only on k, and we can find p disjoint paths starting from a given vertex of a
graph G in time O(p|E(G)|), we can observe that this can be done indeed in
time O(f ′(k)e).

Finding flat zones. Now we show that if there are no well-attached vertices in
the graph G, then a flat zone exists in our grid.

Lemma 5. Let X ∈ PlanarDel(G, k), and let G not include any well-attached
vertices. If K is a grid-component, then there cannot exist (k+1)2 disjoint blocks
such that K is attached to an inner vertex of each block.

Proof. Let us assume for contradiction that there exist (k + 1)2 such blocks.
Since |X | ≤ k, at least (k + 1)2 − k of these blocks do not contain any vertex of
X . So let x1, x2, . . . x(k+1)2−k be adjacent to K and let B1, B2, . . . , B(k+1)2−k

be disjoint blocks of G − X such that xi is an inner vertex of Bi.
Since G − X is planar, it follows from Lemma 3 that a component of K − X

cannot be adjacent to different vertices from {xi|1 ≤ i ≤ (k + 1)2 − k}. So let
Ki be the connected component of K − X that is attached to xi in G − X .
K is connected in G, hence for every Ki there is a vertex of T = K ∩ X that
is adjacent to it in G. Since there are no well-attached vertices in G, every
vertex of T can be adjacent to at most k + 1 of these subgraphs. But then
|T | ≥ ((k + 1)2 − k)/(k + 1) > k which is a contradiction since T ⊆ X . 
�

Let us now fix the constant d = (k + 1)((k + 1)2 − 1).

Lemma 6. Let X ∈ PlanarDel(G, k), let G not include any well-attached ver-
tices, and let x be a vertex of the grid R. Then there cannot exist B1, B2, . . . , Bd+1
disjoint blocks such that for all i (1 ≤ i ≤ d+1) an inner vertex of Bi and x are
both attached to some grid-component Ki.

Proof. As a consequence of Lemma 5, each of the grid-components Ki can be
attached to at most (k+1)2−1 disjoint blocks. But since x is not a well-attached
vertex, there can be only at most k+1 different grid-components among the grid-
components Ki, 1 ≤ i ≤ d + 1. So the total number of disjoint blocks that are
attached to x through a grid-component is at most (k +1)((k +1)2 −1) = d. 
�

Lemma 7. Let X ∈ PlanarDel(G, k), and let G not include any well-attached
vertices. Then there exists a flat zone Z in G.

Proof. Let Z be an open zone which has a vertex z in its core that is attached
to a vertex v of another zone (v /∈ V (Z)) through a grid-component K. By the
choice of the size of the zones we have disjoint blocks Bz and Bv containing z
and v respectively as inner points. We can also assume that Bz is a subgraph of
Z which does not intersect the outer circle of Z.
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By Lemma 3 we know that Bz , Bv or K contains a vertex from X . Let Z1
denote the set of zones with a core vertex in X , let Z2 denote the set of open
zones with a core vertex to which a grid-component, having a common vertex
with X , is attached, and finally let Z3 be the set of the remaining open zones.
Since |X | ≤ k and a grid-component can be attached to inner vertices of at most
(k+1)2 disjoint blocks by Lemma 5, we have that |Z1| ≤ k and |Z2| ≤ k(k+1)2.

Let us count the number of zones in Z3. To each zone Z in Z3 we assign a
vertex u(Z) of the grid not in Z, which is connected to the core of Z by a grid-
component. First let us bound the number of zones in Z3 to which we assigned
a vertex in X . Lemma 6 implies that v ∈ X can be connected this way to at
most d zones, so we can have only at most kd such zones.

Now let U = {v | v = u(Z), Z ∈ Z3}. Let a and b be different members of U ,
and let a be connected through the grid-component Ka with the core vertex za

of Za ∈ Z3. Let Ba denote a block which only contains vertices that are inner
vertices of Za, and contains za as inner vertex. Such a block can be given due to
the size of a zone and its core. Let us define Kb, zb, Zb, and Bb similarly. Note
that V (Za) ∩ X = V (Zb) ∩ X = ∅.

Now let us assume that a and b are in the same component of R − X . Let P
be a path connecting them in R −X . If P has common vertices with Ba (or Bb)
then we modify P the following way. If the first and last vertices reached by P
in Za (or Zb, resp.) are w and w′, then we swap the w − w′ section of P using
the outer circle of Za (or Zb, resp.). This way we can fix a path in R − X that
connects a and b, and does not include any vertex from Ba and Bb. But this
path together with Ka and Kb would yield a path in G − X that connects two
inner vertices of Ba and Bb, contradicting Lemma 3.

Therefore, each vertex of U lies in a different component of R − X . But we
can only delete at most k vertices, and each vertex in a hexagonal grid has at
most 3 neighbors, thus we can conclude that |U | ≤ 3k. As for different zones Z1
and Z2 we cannot have u(Z1) = u(Z2) (which is also a consequence of Lemma
3) we have that |Z3| ≤ 3k. So if we choose the number of zones in R to be
z = 7k + k(k + 1)2 + kd + 1 we have that there are at least 3k + 1 zones in
R which are not contained in Z1 ∪ Z2 ∪ Z3, indicating that they are closed.
Since a vertex can be contained by at most 3 zones, |X | ≤ k implies that there
exist a closed zone Z∗, which does not contain any vertex from X , and all grid-
components attached to Z∗ are also disjoint from X . This immediately implies
that T (Z∗) is a subgraph of G − X , and thus T (Z∗) is planar. 
�

Algorithm for Phase I. The exact steps of Phase I of the algorithm A are
shown in Fig. 2. It starts with running algorithm B on the graph G and integers
w(r) and r. If B returns a hexagonal grid as a topological minor, then the
algorithm proceeds with the next step. If B returns a tree decomposition T of
width w(r), then Phase I returns the triple (G, W, T ). Otherwise G does not
have Hr as minor and its treewidth is larger than w(r), so by Lemma 1 we can
conclude that G /∈ Planar + kv.

In the next step the algorithm tries to find a flat zone Z. If such a zone
is found, then the algorithm executes a deletion, whose correctness is implied
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Phase I of algorithm A:

Input: G = (V, E).

Let W = ∅.
1. Run algorithm B on G, w(r), and r.

If it returns a subgraph H ′
r topologically isomorphic to Hr then go to

Step 2. If it returns a tree decomposition T of G, then output(G, W , T ).
Otherwise output(”No solution.”).

2. For all zones Z do:
If Z is flat then G := G − T (R0), and go to Step 1.

3. Let U = ∅. For all x ∈ V : if x is well-attached then U := U ∪ {x}.
If |U | = ∅ or |W | + |U | > k then output(”No solution.”).
Otherwise W := W ∪ U , G := G − U and go to Step 1.

Fig. 2. Phase I of algorithm A

by Lemma 2. Note that after altering the graph, the algorithm must find the
hexagonal grid again and thus has to run B several times.

If no flat zone was found in Step 2, the algorithm removes well-attached
vertices from the graph in Step 3. The vertices already removed this way are
stored in W , and U is the set of vertices to be removed in the actual step. By
Lemma 4, if X ∈ PlanarDel(G, k) then W ∪ U ⊆ X , so |W | + |U | > k means
that there is no solution. By Lemma 7 the case U = ∅ means also that there
is no solution for the problem instance. In these cases the algorithm stops with
the output ”No solution.” Otherwise it proceeds with updating the variables W
and G, and continues with Step 1.

The output of the algorithm can be of two types: it either refuses the instance
(outputting ”No solution.”) or it returns an instance for Phase II. For the above
mentioned purposes the new instance is equivalent with the original problem
instance in the following sense:

Theorem 1. Let (G′, W, T ) be the triple returned by A at the end of Phase I.
Then for all X ⊆ V (G) it is true that X ∈ PlanarDel(G, k) if and only if W ⊆ X
and (X \ W ) ∈ PlanarDel(G′, k − |W |).

Now let us examine the running time of this phase. The first step can be done
in time O(f ′′(k)n) according to [17,2,16] where n = |V (G)|. Since the algorithm
only runs algorithm B again after reducing the number of the vertices in G, we
have that B runs at most n times. This takes O(f ′′(k)n2) time. The second step
requires only linear time (a breadth first search and a planarity test). Deciding
whether a vertex is well-attached can be done in time O(f ′(k)e) (where e =
|E(G)|), so we need O(f ′(k)ne) time to check every vertex at a given iteration
in Step 3. Note that the third step is executed at most k + 1 times, since at
each iteration |W | increases. Hence, this phase of algorithm A uses total time
O(f ′′(k)n2 + f ′(k)kne) = O(f(k)n2), as the number of edges is O(kn).
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5 Phase II of Algorithm A

At the end of Phase I of algorithm A we either conclude that there is no solution,
or we have a triple (G′, W, T ) for which Theorem 1 holds. Here T is a tree
decomposition for G′ of width at most w(r). This bound only depends on r
which is a function of k. From the choice of the constants r, q, z, and d we can
easily derive that tw(G′) ≤ w(r) ≤ 100(k + 2)7/2.

In order to solve our problem we only have to find out if there is a set Y ∈
PlanarDel(G′, k′) where k′ = k − |W |. For such a set, Y ∪ W would yield a
solution for the original Planar + k vertex problem.

A theorem by Courcelle states that every graph property defined by a formula
in monadic second-order logic (MSO) can be evaluated in linear time if the input
graph has bounded treewidth. Here we consider graphs as relational structures of
vocabulary {V, E, I}, where V and E denote unary relations interpreted as the
vertex set and the edge set of the graph, and I is a binary relation interpreted
as the incidence relation. We will denote by UG the universe of the graph G, i.e.,
UG = V (G) ∪ E(G). Variables in monadic second-order logic can be element or
set variables. For a survey on MSO logic on graphs see [5].

Following Grohe [11], we use a strengthened version of Courcelle’s Theorem:

Theorem 2. ([9]) Let ϕ(x1, . . . , xi, X1, . . . , Xj , y1, . . . , yp, Y1, . . . , Yq) denote an
MSO-formula and let w ≥ 1. Then there is a linear-time algorithm that, given a
graph G with tw(G) ≤ w and b1, . . . , bp ∈ UG, B1, . . . , Bq ⊆ UG, decides whether
there exist a1, . . . , ai ∈ UG, A1, . . . , Aj ⊆ UG such that

G � ϕ(a1, . . . , ai, A1, . . . , Aj , b1, . . . , bp, B1, . . . , Bq),
and, if this is the case, computes such elements a1, . . . , ai and sets A1, . . . , Aj.

It is well-known that there is an MSO-formula ϕplanar which describes the pla-
narity of graphs, i.e., for every graph G the statement G � ϕplanar holds if and
only if G is planar. This can be easily seen thanks to the simple characteriza-
tion of planar graphs by Kuratowski’s Theorem: a graph is planar if and only if
it does not contain any subgraph topologically isomorphic to K5 or K3,3. The
existence of these subgraphs can be formulated using vertex sets as variables.

It is easy to modify ϕplanar so that we obtain a formula ϕ∗(x1, . . . , xk′ ) that
expresses the following: if we delete the vertices x1, . . . , xk′ from the graph, then
the resulting graph is planar. All we have to ensure is that the subgraphs that
we obstruct in ϕplanar (i.e., the subdivisions of the graphs K5 and K3,3) are
disjoint from the vertices x1, . . . , xk′ . So we can state the following:

Theorem 3. There exists an MSO-formula ϕ∗(x1, . . . , xk′ ) for which the state-
ment G � ϕ∗(v1, . . . , vk′) holds if and only if G − {v1, . . . , vk′} is planar.

Now let us apply Theorem 2. Let C be the algorithm which, given a graph G of
bounded treewidth, decides whether there exist v1, . . . , vk′ ∈ UG such that G �
ϕ∗(v1, . . . , vk′) is true, and if possible, also produces such variables. By Theorem
3, running C on G′ either returns a set of vertices U ∈ PlanarDel(G′, k′), or
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reports that this is not possible. Hence, we can finish algorithm A in the following
way: if C returns U then output(U ∪ W ), otherwise output(”No solution”).

The running time of Phase II is O(g(k)n) for some function g.

Remark 1. Phase II of the algorithm can also be done by applying dynamic
programming, using the tree decomposition T returned by B. This also yields a
linear-time algorithm, with a double exponential dependence on tw(G′). Since
the proof is quite technical and detailed, we omit it.
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Abstract. We show that the mixed search number and the linear-width
of interval graphs and of split graphs can be computed in linear time and
in polynomial time, respectively.

1 Introduction

In the graph searching problem, a team of searchers (pursuers) is trying to catch
a fugitive moving along the edges of a graph. The problem is to find the minimum
number of searchers that can guarantee the capture of the fugitive in the worst
case scenario for the searchers (assuming that fugitive is very fast, invisible,
and knows the strategy of the searchers). The study of this problem started in
1970s when it was independently introduced by Parsons [19] and Petrov [23], and
since that time it has been studied extensively [2,3,13,17,18,22]. It fits into the
broader class of pursuit-evasion/search/rendezvous problems on which hundreds
of papers have been written (see e.g., the book [1]).

The classical Parson-Petrov formulation of the problem is referred to as edge
searching, and there are two modifications of it giving two other models. The
first model, node searching, was introduced by Kirousis and Papadimitriou [13],
and the second model, mixed searching, by Bienstock and Seymour [3]. The
difference between the models is in the way the searchers are allowed to catch
the fugitive or clear the edges of the graph. (We give formal definitions of the
problems in the next section.) The minimum number of the searchers sufficient
to perform searching and ensure capture for each of the models are respectively
the edge, node, and mixed search numbers, and computations of these are all
NP-hard [3,18,13].

The node search number of a graph is known to be equal to its pathwidth
plus one. Similarly, the mixed search number of a graph is equal to its proper
pathwidth [24]. Also for every graph G of minimum vertex degree at least 2,
the proper pathwidth of G is equal to the linear-width of G. While pathwidth
can be seen as a “linear” variant of treewidth, linear-width is a “linear” vari-
ant of branchwidth. Whereas the computation of treewidth and pathwidth of
interval and split graphs is almost straightforward, the polynomial time algo-
rithms [15,20] computing the branchwidth of an interval graph are not trivial
and computing the branchwidth of a split graph is NP-hard [15]. Such a difference
between computational complexities of computing treewidth and branchwidth
of split graphs was one of the motivations for our study.
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Graph searching problems can be seen as vertex and edge ordering problems
and computational complexity of different ordering problems on interval and
split graphs is a well studied area (see e.g., the survey [6]). For example, the
bandwidth minimization problem is solved in polynomial time on interval graphs
[14] and is NP-hard on split graphs [16]. Profile (or SumCut) problem is trivially
solvable in polynomial time on interval graphs and is NP-hard on split graphs
[21], while Optimal Linear Arrangement is NP-hard on interval graphs [5].

It is easy to show that the node search number of an interval or split graph
can be computed in linear time. Independently, Peng et al. [22] and Golovach
et al. [10] show that similar result holds for edge search number. In this paper
we show that the mixed search number (the proper pathwidth and the linear-
width) of interval and split graphs can be computed in polynomial time. In fact,
for interval graphs we obtain a linear time algorithm. For interval graphs our
algorithm resembles the algorithm for the edge search number [22,10], but for
split graphs there is a substantial difference between edge search and mixed
search numbers, and the situation with mixed search is much more involved.

Due to space restrictions the proofs of some of our results are omitted.

2 Background, Definitions, and Notations

We work with simple and undirected graphs G = (V, E), with vertex set V (G) =
V and edge set E(G) = E, and we let n = |V |, m = |E|. The set of neighbors
of a vertex x is denoted by N(x) = {y | xy ∈ E}. A vertex set C is a clique if
every two vertices in C are adjacent, and a maximal clique if no superset of C is
a clique. The maximum size of a clique in G is denoted by ω(G). A vertex set I
is an independent set if no two vertices of I are adjacent. The degree of a vertex
v is d(v) = |N(v)|. A vertex is isolated if it has degree 0.

A path is a sequence v1, v2, ..., vp of distinct vertices of G, where vivi+1 ∈ E
for 1 ≤ i < p, in which case we say that this is a path between v1 and vp. A path
v1, v2, ..., vp is called a cycle if v1vp ∈ E. A chord of a cycle (path) is an edge
connecting two non-consecutive vertices of the cycle (path).

A graph is chordal if every cycle of length at least 4 has a chord. A graph
is an interval graph if intervals of the real line can be associated to its vertices
such that two vertices are adjacent if and only if their corresponding intervals
overlap. Interval graphs are chordal. A caterpillar is a graph that contains a
chordless path such that if the vertices on this path are deleted only isolated
vertices remain. Caterpillars are interval graphs and trees. A graph is a split
graph if its vertices can be partitioned into a clique C and an independent set
I, in which case (C, I) is called a split partition of G. A split partition of a split
graph is not unique, but it is always possible to choose a partition such that C is
a clique of maximum size. In this paper we will always assume that C is a clique
of maximum size. For a vertex u ∈ C, we denote by NI(u) the neighbors of u
in I. Split graphs are also chordal. Let us remark that split and interval graphs
can be recognized in linear time. A clique of maximum size in these graphs can
be found in linear time as well. (See e.g., [11]).
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The parameters that we study in this paper, mixed search number and linear-
width, are both closely related to a parameter called pathwidth, defined through
path decompositions.

A path-decomposition of a graph G = (V, E) is a linearly ordered sequence of
subsets of V , called bags, such that the following three conditions are satisfied:
1. Every vertex x ∈ V appears in some bag. 2. For every edge xy ∈ E there is
a bag containing both x and y. 3. For every vertex x ∈ V , the bags containing
x appear consecutively. The width of a decomposition is the size of the largest
bag minus one, and the pathwidth of a graph G, pw(G), is the minimum width
over all possible path decompositions. A path decomposition of width pw(G) is
called an optimal path decomposition of G.

By a classical result of Gillmore and Hoffman [9], a graph G is an interval
graph if and only if it has an optimal path decomposition where every bag is a
maximal clique of G. Such an optimal path decomposition is often called a clique-
path. It is well known that the pathwidth of an interval graph is one less than
the size of its largest clique. Clique-paths of interval graphs can be computed
in linear time [4]. Consequently, the pathwidth of interval graphs can also be
computed in linear time.

The mixed search game can be formally defined as follows. Let G = (V, E) be
a graph to be searched. A search program consists of a sequence of discrete steps
which involves searchers. Initially there is no searcher on the graph. Every step
is one of the following three types

– Some searchers are placed on some vertices of G (there can be several
searchers located in one vertex);

– Some searchers are removed from G;
– A searcher slides from a vertex u to a vertex v along edge uv.

At every step of the search program the edge set of G is partitioned into two sets:
cleared and contaminated edges. Intuitively, the agile and omniscient fugitive
with unbounded speed who is invisible for the searchers, is located somewhere
on a contaminated territory, and cannot be on cleared edges. Initially all edges of
G are contaminated, i.e., the fugitive can be anywhere. A contaminated edge uv
becomes cleared at some step of the search program either if both its endpoints
contain searchers, or if at this step a searcher located in u slides to v along uv.

A cleared edge e is (re)contaminated at some step if at this step there exists
a path P containing e and a contaminated edge and no internal vertex of P
contains a searcher. For example, if a vertex u is incident to a contaminated
edge e, there is only one searcher at u and this searcher slides from u to v along
edge uv �= e, then after this step the edge uv, which is cleared by sliding, is
immediately recontaminated.

A search program is winning if after its termination all edges are cleared. The
mixed search number of a graph G, denoted by ms(G), is the minimum number
of searchers required for a winning program of mixed searching on G.

The differences between mixed, edge, and node searching are in the way the
edges can be cleared. In node searching an edge is cleared only if both its end-
points are occupied (no clearing by sliding). In edge searching an edge can be
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cleared only by sliding. So mixed searching can be seen as a combination of node
and edge searching. The edge and node search numbers of a graph G are defined
similarly to the mixed search number, and are denoted by es(G) and ns(G),
respectively.

A search program is called monotone if at any step of this program no reconta-
mination occurs. For all three versions of graph searching, recontamination does
not help to search the graph with fewer searchers [3,17], i.e., on any graph with
{edge, mixed, node} search number k there exists a winning monotone {edge,
mixed, node} search program using k searchers. Thus in this paper we consider
only monotone search programs.

The linear-width was introduced by Thomas [26]. The linear-width of an ar-
bitrary graph G, lw(G), is defined to be the smallest integer k ≥ 0 such that the
edges of G can be ordered e1, ..., em in such a way that for every i = 1, 2, ..., m−1,
there are at most k vertices incident both to an edge in {e1, ..., ei} and to an
edge in {ei+1, ..., em}.

Takahashi et al. [24] proved that the mixed search number of any graph is
equal to its proper pathwidth. Fomin [7] showed that proper pathwidth is also
equivalent to another graph parameter, namely split bandwidth. Thus our algo-
rithms for computing mixed search numbers of interval and split graphs can be
applied to these parameters as well.

The next proposition follows directly from the results of Bienstock and Sey-
mour [3], Fomin and Thilikos [8], and Takahashi, Ueno, and Kajitani [24].

Proposition 1. For any graph G, pw(G) ≤ lw(G) ≤ ms(G) ≤ pw(G) + 1.

Furthermore, if G has no vertices of degree 1 then lw(G) = ms(G) [3]. In fact,
Thilikos showed the following stronger result [25].

Proposition 2 ([25]). Let G be any graph, and let G′ be the graph obtained by
removing all vertices of degree 1 from G. Then lw(G) = ms(G′).

3 Interval Graphs

By the characterization of interval graphs through clique paths, pw(G) = ω(G)−
1 for every interval graph G. Hence, by Proposition 1 we know that for an interval
graph G, ms(G) is either ω(G) − 1 or ω(G). We characterize interval graphs G
with ms(G) = ω(G).

Observation 1. If G is a complete graph then ms(G) = n − 1.

Lemma 1. Let G be a graph consisting of three cliques of size n−2 that intersect
at the same n − 3 vertices. Then ms(G) = ω(G) = n − 2.

Proof. Clearly G is an interval graph and ω(G) = n− 2. By Proposition 1, n− 2
searchers are enough to clear G. Let us show that n−3 searchers are not enough.
Let C be the set of n − 3 vertices in the intersection of the three cliques, and let
x, y, z be the remaining vertices. We need n − 3 searchers to clear C ∪ {x} by
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Observation 1. If we start by placing all n − 3 searchers on vertices of C, then
we will need to slide one of them to x, and this will allow recontamination of a
vertex of C from y or z. Since we know that there is always an optimal program
without recontamination, we can discard this approach. Let us place all n − 3
searchers on x and n−4 vertices of C. Then slide the searcher on x to the single
unguarded vertex of C. Now all edges between pairs of vertices in C ∪ {x} are
cleared. To clear y or x, we need to slide a searcher from a vertex of C to one
of these vertices, say y. But then this vertex of C will become recontaminated
from x. Thus it is not possible to continue the search without recontamination
with only n − 3 searchers, and hence ms(G) = n − 2.

For the following results, we need to give more details about clique-paths. An
interval graph has at most n maximal cliques. We will let (B1, S1, B2, S2, ..., Sc−1,
Bc) denote a clique-path of G, where Bi is a bag of the clique-path and a maximal
clique of G for each 1 ≤ i ≤ c, and Si = Bi ∩ Bi+1 represents the edge between
Bi and Bi+1 for 1 ≤ i < c.

Lemma 2. Let G be an interval graph with ω(G) = k + 1. Then G contains
three maximal cliques of size k + 1 that intersect at the same k vertices if and
only if there are two consecutive edges Si−1 and Si of cardinality k satisfying
Si−1 = Si in every clique-path of G.

Proof. Assume that G is an interval graph with ω(G) = k + 1 and a clique-path
of G contains two consecutive edges Si and Si+1 of cardinality k satisfying Si =
Si+1. This means that the maximal cliques of G appearing as bags Bi−1, Bi, Bi+1
share the same k vertices. Since each such maximal clique is distinct, each has a
vertex that is not in this intersection, and since ω(G) = k + 1, each has exactly
k + 1 vertices.

For the other direction, assume that G is an interval graph with ω(G) = k+1
and that G has three maximal cliques of size k + 1 that intersect at the same k
vertices. Pick any clique-path of G, and let bags Bi, Bj , B� be the representatives
of these three maximal cliques. They do not necessarily appear consecutively in
the chosen clique-path. Let Bi be the one furthest to the left, and let Bj be
the one furthest to the right. By the definition of clique-paths, the intersection
Bi ∩ Bj must be a subset of every edge on the path between Bi and Bj . Since
ω(G) = k+1 and |Bi ∩Bj | = k, this means that every edge on the path between
Bi and Bj has cardinality exactly k and thus must be equal to Bi ∩ Bk. Since
B� also appears on the path between Bi and Bj , there are at least two such
consecutive edges in the clique-path, and the proof is complete.

Theorem 2. Let G be an interval graph. Then ms(G) = ω(G) if and only if
G has three maximal cliques of size ω(G) that intersect at the same ω(G) − 1
vertices. Otherwise, ms(G) = ω(G) − 1.

Proof. If G has three maximal cliques of size ω(G) that intersect at the same
ω(G) − 1 vertices, then the subgraph of G induced by the vertices of these three
maximal cliques has mixed search number ω(G) by Lemma 1. Consequently,
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ms(G) cannot be smaller than ω(G). By Proposition 1, ms(G) ≤ pw(G) + 1 =
ω(G). Hence we can conclude that ms(G) = ω(G) in this case.

Assume now that there are no three maximal cliques of size ω(G) in G that
intersect at the same ω(G) − 1 vertices. We give a program to search the graph
using ω(G) − 1 searchers. Since ω(G) − 1 searchers are the fewest possible by
Proposition 1, the result will follow. Let P = (B1, S1, B2, S2, ..., Bc) be any
clique-path of G. By Lemma 2, we know that there is no index i with 2 ≤ i ≤
c − 1 satisfying Si−1 = Si and |Si−1| = |Si| = ω(G) − 1. We start searching
the graph with bag B1. Since B1 �⊆ B2, there is a vertex x ∈ B1 \ B2, and
since B1 ∩ B2 = S1 �= ∅, there is a vertex y ∈ S1 with y �= x. Furthermore
|B1| ≤ ω(G). If |B1| ≤ ω(G) − 1, then simply place searchers on all vertices of
B1. If |B1| = ω(G), then place searchers on all vertices of B1\{y}, and then slide
the searcher on x to y. In both cases, all vertices of B1 and all edges between
them are cleared, since x has no neighbors in any other bag by the definition
of a clique-path. Actually, by the same argument, no vertex of B1 \ B2 has any
neighbors in any other bag than in B1, hence searchers placed on these vertices
can now be safely removed as long as we keep searchers on all vertices of S1.

Observe that vertices of (B1 ∪ ... ∪ Bi) \ Si have no neighbors belonging to
(Bi+1 ∪ ... ∪ Bc) \ Si. Hence we can assume by induction that we have already
cleared the subgraph induced by the vertices of B1, ..., Bi that do not belong
to Si, and we have searchers placed on all vertices of Si = Bi ∩ Bi+1. We
will now show how to proceed so that the subgraph induced by the vertices
of B1, ..., Bi, Bi+1 is cleared and searchers are kept on all vertices of Si+1. If
|Bi+1| ≤ ω(G) − 1 then |Si| ≤ ω(G) − 2 and there are available searchers not
guarding the vertices of Si such that we can place them on vertices of Bi+1 and all
vertices of Bi+1 will be occupied by searchers. Consequently, all vertices of Si+1
are also occupied by searchers and the proof for this case is complete. Assume for
the remaining part that |Bi+1| = ω(G). Thus we have enough available searchers
to occupy all vertices of Bi+1 except one, without removing any searcher from Si.
We distinguish between two cases: Si = Si+1 and Si �= Si+1. If Si = Si+1, then
we know by our assumption and Proposition 1 that |Si| = |Si+1| ≤ ω(G) − 2.
Hence there are at least two vertices x, y ∈ Bi+1 \ Si+1. We place the available
searchers on all unguarded vertices of Bi+1 except y. Then we can safely slide the
searcher on x to y, which clears whole Bi+1 while guarding all vertices of Si+1 by
keeping searchers on them. What remains is the case when Si �= Si+1. Assume
first that there is a vertex x ∈ Si \ Si+1. We place searchers on all unguarded
vertices of Bi+1 except one in an arbitrary way. Then we can safely slide the
searcher on x to the single vertex of Bi that is not occupied by a searcher, since
x has no neighbors in the bags appearing on the other side of Si+1. This will
again clear whole Bi+1 while keeping searchers on all vertices of Si+1. If there is
no vertex x ∈ Si \ Si+1 then Si ⊂ Si+1, which means that |Si| ≤ ω(G) − 2, and
there is at least one vertex x in Bi+1 that does not belong to any other bag since
Si+1 ⊂ Bi+1. Hence we have at least one available searcher that we can place on
x without removing any searchers from Si. We place the available searchers on
all vertices of Bi+1 except one vertex different from x. Now, we can safely slide
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the searcher on x to the single unguarded vertex of Bi+1, which clears whole
Bi+1, and we have searchers on all vertices of Si+1, since x �∈ Si+1.

We have thus arrived at the main result of this section.

Theorem 3. The mixed search number of an interval graph can be computed in
linear time.

Proof. Let G be an interval graph. A clique-path of G can be computed in linear
time, and it has at most n maximal cliques [4]. This means that the sum of
the sizes of all bags and all edges of the clique-path is O(n + m). Given the
clique-path, to find ms(G), by Theorem 2 we need to check for every triple of
consecutive maximal cliques Bi−1, Bi, Bi+1 having each ω(G) vertices whether
Bi−1 ∩ Bi = Bi ∩ Bi+1.

We argue that this can be done in overall linear time. First sort all vertices
in all bags according to the same order. Since the sum of the sizes of all bags
is O(n + m) and the largest value is n, this can be done in O(n + m) time.
Then comparing three bags can be done in O(ω(G)) time. We do this only when
all three bags have ω(G) vertices. There are ω(G) − 1 edges in Bi−1 that do
not appear in Bi or Bi+1 since Bi−1 has one vertex not appearing in Bi or
Bi+1. Hence we can let these edges of Bi−1 “pay for” the comparison between
Bi−1, Bi, Bi+1. Thus each edge of G will pay for at most 3 of comparisons, and
therefore we can bound the total time of all comparisons by O(m).

Corollary 4. The linear-width of an interval graph can be computed in linear
time.

As an additional structural result, we characterize interval graphs G with lw(G)
�= ms(G).

Theorem 5. Let G be an interval graph with at least two edges. Then lw(G) =
ms(G) − 1 if and only if G is a caterpillar with maximum degree at least 3.
Otherwise lw(G) = ms(G).

Proof. By Proposition 1, lw(G) is either equal to ms(G) or to ms(G) − 1.
Let G be a caterpillar with maximum degree at least 3. Then it has three

maximal cliques of size 2 that intersect at the same 1 vertex. By Theorem 2,
ms(G) = ω(G) = 2. Since G is a caterpillar, lw(G) = pw(G) = 1. Therefore
lw(G) = ms(G) − 1.

For the other direction, let G be an interval graph with lw(G) �= ms(G). By
Proposition 1, ms(G) = pw(G) + 1 = ω(G) and lw(G) = pw(G) = ω(G) − 1.
Since ms(G) = ω(G) by Theorem 2, G has three cliques of size ω(G) that
intersect at the same ω(G) − 1 vertices. If ω(G) = 2 then G is a caterpillar
with maximum degree at least three, and the proof is complete. Assume for
contradiction that ω(G) > 2. Then the three cliques mentioned above are of size
at least 3. The subgraph of G induced by the union of the vertices of these three
cliques has mixed search number ω(G) by Lemma 1. Since this subgraph has
no vertices of degree 1, its linear-width is also ω(G). Consequently, lw(G) and
ms(G) cannot be less than ω(G), and we conclude that they are equal, which
gives a contradiction. Hence ω(G) cannot be more than 2 if lw(G) ≤ ms(G).
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4 Split Graphs

It is easy to show that the pathwidth of a split graph G is either ω(G) − 1 or
ω(G) [12]. Hence it follows from this and Proposition 1 that ms(G) is equal to
one of the following: ω(G)− 1, ω(G), or ω(G) + 1. We characterize each of these
three cases.

Theorem 6. Let G = (V, E) be a split graph with a split partition (C, I) of its
vertices where C is a clique of maximum size. Then ms(G) = ω(G)−1 = |C|−1
if and only if one of the following three conditions holds.

1. There are 2 vertices u, v ∈ C such that NI(u) ∩ NI(v) = ∅ and |NI(v)| ≤ 1
and one of the following is true:

(a) |NI(u)| ≤ 1, or
(b) there is an additional vertex x ∈ C such that |NI(u) ∩ NI(x)| ≤ 1.

2. There are 3 vertices x, u, v ∈ C such that NI(u) ∩ NI(x) = ∅ and |NI(v) ∩
NI(x)| ≤ 1 and one of the following is true:

(a) |NI(u)| ≤ 1, or
(b) |NI(v)| ≤ 2 and |NI(u) ∩ NI(v)| ≤ 1.

3. There are 4 vertices x, y, u, v ∈ C such that (NI(x)∪NI (y)) ∩ (NI(u)∪NI(v))
contains at most 2 vertices u1, v1, and u1x /∈ E and v1u /∈ E.

Proof. Assume that ms(G) = |C| − 1. Hence there is a monotone mixed search
program that is able to clear G with |C| − 1 searchers. At some point of this
search, all |C| − 1 searchers must occupy |C| − 1 vertices of C, since only from
such a situation, by sliding one of the searchers to the single vertex of C without
a searcher, we can clear any clique C and the edges with both endpoints in C.
Let us consider the first time when |C|−1 vertices of C are occupied by searchers
during this search program. Let v be the vertex that got occupied by a searcher
at this point, and let u be the vertex of C without a searcher. Without loss of
generality, we can assume that all vertices of I that are not adjacent to u or v
are cleared, as well as all edges between such vertices and C, since we can always
do this before placing the last searcher on v. Furthermore, no neighbors of u in
I are cleared (otherwise recontamination would be allowed), and at most one
neighbor of v in I is cleared (if we placed the last searcher on a neighbor and
slided to v). Let v1 this possible neighbor of v; consequently v1 is not adjacent
to u. The next step must be to slide a searcher from one of the cleared vertices
of C to u, because all vertices of C are pairwise adjacent and u is not cleared,
so we would get recontamination otherwise. Let step i be this next step. Hence
step i is either to slide from v to u, or to slide from another vertex x �= v of
C to u. We will show that in either case, the possible ways of completing this
search successfully without any more searchers all lead to the conditions of the
theorem, proving the only if direction. For each condition, we will also explain
how to complete the search with |C| − 1 searchers, hence the if direction will be
proved at the same time.
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Assume that step i of the search is to slide from v to u. This can only be done
if v1 is cleared (or does not exist), hence a searcher must have slided from v1 to
v before this step. Then we know that |NI(v)| ≤ 1 and that u and v have no
common neighbors. After step i, v is the only vertex of C without a searcher.

If step i + 1 is to slide from u to a neighbor u1 of u in I, then u cannot have
more neighbors (otherwise recontamination), and we have Condition 1 (a). The
search is complete.

If step i + 1 is to slide (or move) from another vertex x �= u to a neighbor
u1 of u in I, then x and u can have at most this single neighbor u1 in common
in I. Also x and v can have at most v1 as a common neighbor in I, but this
is already covered since |NI(v)| ≤ 1. Hence we have Condition 1 (b). Now any
other neighbor that u might have in I can be cleared with the searcher on u1,
to complete the search.

Assume that step i of the search is to slide from a vertex x �= v of C to u.
Then we know that NI(v)∩NI(x) ⊆ {v1} and NI(u)∩NI(x) = ∅. Hence, if x is
adjacent to v1, we must have slided a searcher from v1 to v to place this searcher
on v, and v1 is cleared along with all edges between v1 and C. After step i, x is
the only vertex of C without a searcher.

If step i + 1 is to slide from u to a neighbor u1 ∈ I of u, then |NI(u)| ≤ 1.
Hence we have Condition 2 (a). Now we can use the searcher on u1 to clear all
neighbors of v and all edges between these and C, one by one.

If step i + 1 is to move from u to a neighbor of v in I which is not adjacent
to u, then NI(u) = ∅ and we can use the searcher on u to clear all neighbors of
v in I one by one. This case is covered by the previous case, since u could have
a neighbor in I which we could have cleared before moving on to the neighbors
of v. Hence we have again Condition 2 (a).

If step i + 1 is to slide from v to a neighbor of v in I then |NI(v)| ≤ 2.
Furthermore, if v has two neighbors in I, then at most one of these can be
adjacent to u, because to clear both neighbors of v we must have slided to v
from v1, and v1 is not adjacent to u as argued above. Hence we have Condition
2 (b). Now we can use the searcher on the second neighbor of v to search all
remaining neighbors of u in I one by one.

If step i+1 is to move from v to a neighbor u1 ∈ I of u with u1 /∈ NI(v), then
NI(v) does not contain any other vertices than v1. Now we can use the searcher
on u1 to clear all neighbors of u. Note that this situation is just a special case
of the previous situation, hence it is covered by Condition 2 (b).

If step i + 1 is to move from a vertex y �= u, x of C to a neighbor u1 ∈ I
of u, then NI(y) ∩ NI(u) ⊆ {u1} and NI(y) ∩ NI(v) ⊆ {v1, u1}. In this case,
we must have slided from v1 to v before placement on v, and after the slide (or
move) from y to u1, u1 will be cleared and it can be adjacent to both u and v.
After step i + 1, the searcher on u1 can be used to clear all remaining uncleared
vertices of NI(u) ∪ NI(v). We should also remember that NI(v) ∩ NI(x) ⊆ {v1}
and v1u /∈ E. Hence we have Condition 3.

If step i + 1 is to move from a vertex y �= u, x of C to a neighbor of v in I
then have the exact same situation as the previous situation (because u1 can be
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adjacent to v and hence serve as the assumed neighbor of v), and hence again
Condition 3. The search can be completed in the same way.

Lemma 3. Let G be a split graph with a split partition (C, I) of its vertices
where C is a clique of maximum size. If there are two vertices u, v ∈ C such that
|NI(u) ∩ NI(v)| ≤ 2 then ms(G) ≤ ω(G) = |C|.

Theorem 7. Let G be a split graph with a split partition (C, I) of its vertices
where C is a clique of maximum size. Then ms(G) = ω(G) + 1 = |C| + 1 if and
only if |NI(u) ∩ NI(v)| ≥ 3 for every pair of vertices u, v ∈ C.

Proof. We know that |C| + 1 searchers are always enough to clear any split
graph, hence if ms(G) > |C| then ms(G) = |C| + 1. Consequently Lemma 3
readily states that if ms(G) = |C|+1 then every pair of vertices in C must have
at least three common neighbors in I. For the opposite direction we need to
show that |C| searchers cannot clear the graph under this condition. Assume on
the contrary that every two vertices in C have at least three common neighbors
in I, and that there is a monotone mixed search program that is able to clear
the whole graph with |C| searchers. As argued previously, at some point of the
search searchers must be placed on |C|−1 vertices of C. Consider the first point
in time when this happens, and let u be the vertex of C without a searcher.
Without loss of generality, we can use the last searcher to clear all vertices of I
that are not neighbors of u, and assume that all edges between pairs of vertices
in (C \ {u}) ∪ (I \ N(u)) are cleared. We need to clear the edges between u
and its neighbors, and the edges between NI(u) and C \ {u}. We know that
there can be at most one vertex in NI(u) that can have a searcher on it, and
no other vertices in NI(u) are cleared, because otherwise they would be subject
to recontamination from u. We know that every vertex in C \ {u} has at least 3
neighbors in NI(u). If we slide a searcher from a vertex of C to another vertex,
recontamination will occur. Assuming without loss of generality that the last
searcher is placed on a vertex u1 of NI(u), the next step must be to slide the
last searcher from u1 to u. This will clear all edges between u1 and C, and all
edges with both endpoints in C. After this u has still uncleared neighbors, and
for each v ∈ C \ {u}, u and v have at least two common uncleared neighbors v1
and v2. If we slide a searcher from v to v1, v will get recontaminated from v2,
and if we slide a searcher from u to v1, u will become recontaminated from v2.
Hence we cannot complete the search with only |C| searchers, which gives the
desired contradiction.

Corollary 8. For a split graph G, ms(G) = ω(G) if and only if neither any of
the three conditions of Theorem 6 nor the condition of Theorem 7 are satisfied.

We are ready to state the main result of this section, which follows almost
immediately from the above results.

Theorem 9. The mixed search number of a split graph can be computed in
polynomial time.
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Corollary 10. The linear-width of a split graph can be computed in polynomial
time.

Finally, like Theorem 5 on interval graphs, we conclude with a structural result
on the linear-width of split graphs.

Lemma 4. Let G be a split graph.

1. If lw(G) �= ms(G) then lw(G) = ω(G) − 1 and ms(G) = ω(G).
2. If G′ is the graph obtained by removing all vertices of degree 1 from G, and

ω(G) ≥ 3, then lw(G) = lw(G′).

Proof. By Proposition 1, the condition lw(G) �= ms(G) yields one of the follow-
ing

(a) lw(G) = ω(G) − 1 and ms(G) = ω(G);
(b) lw(G) = ω(G) and ms(G) = ω(G) + 1.

Let G′ be a graph obtained from G by removing all vertices of degree one.

1. For sake of contradiction, let us assume that the first statement of Lemma
does not hold. Then G satisfies (b), i.e. ms(G) = ω(G) + 1. By Theorem 7,
ms(G′) = ms(G) = ω(G) +1. Since G′ has no vertices of degree 1, we have that
ms(G′) = lw(G). Therefore,

ms(G) ≥ lw(G) ≥ lw(G′) = ms(G′) = ms(G) = ω(G) + 1.

This is a contradiction, because lw(G) �= ms(G). Therefore, G does not satisfy
(b), and thus should satisfy (a).

2. Because ω(G) ≥ 3, we have that G′ has no vertices of degree 1. Conse-
quently, by Proposition 2, lw(G) = ms(G′) = lw(G′).
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Abstract. The computation of all minimal transversals of a given hy-
pergraph in output-polynomial time is a long standing open question
known as the transversal hypergraph generation. One of the first at-
tempts on this problem—the sequential method [Ber89]—is not
output-polynomial as was shown by Takata [Tak02]. Recently, three new
algorithms improving the sequential method were published and experi-
mentally shown to perform very well in practice [BMR03, DL05, KS05].
Nevertheless, a theoretical worst-case analysis has been pending. We
close this gap by proving lower bounds for all three algorithms. Thereby,
we show that none of them is output-polynomial.

1 Introduction

The transversal hypergraph generation is the problem to compute, for a given
hypergraph H ⊆ 2V with vertex set V , the transversal hypergraph Tr(H) that
consists of all minimal subsets of V having a non-empty intersection with each
hyperedge of H. This problem has many applications in such different fields like
artificial intelligence and logic [EG95, EG02], computational biology [Dam06],
database theory [MR92], data mining and machine learning [GKMT97], mobile
communication systems [SS98], and distributed computing [GB85].

Due to the importance of the transversal hypergraph generation there have
been various approaches to solve it. But since the size of Tr(H) may be exponen-
tial in the size of H, we cannot find an algorithm that runs in time polynomial
in the size of the input H. Therefore, another notion of fast solvability has to
be used. An algorithm is said to be output-polynomial if its running time is
bounded polynomially in the size of the input and output [JPY88]. Finding an
output-polynomial algorithm for the transversal hypergraph generation is a long
standing open problem [Pap97].

One of the earliest approaches is the sequential method [Ber89]. It computes
the transversal hypergraph by iteratively combining transversals of specific sub-
hypergraphs of the input in a brute-force manner. The worst-case analysis of the
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sequential method took many years until Takata showed that it is not output-
polynomial [Tak02]. So far, this is the only proven nontrivial lower bound for
any algorithm for the transversal hypergraph generation.

In recent years, several improvements of the sequential method have been pub-
lished. We focus on the DL-algorithm of Dong and Li [DL05], the BMR-algorithm
of Bailey, Manoukian, and Ramamohanarao [BMR03], and the KS-algorithm of
Kavvadias and Stavropoulos [KS05]. All three algorithms have been empirically
tested on practical instances. Especially the BMR-algorithm performs very well
on instances from the data mining field. But while the practical performance
of the algorithms has been examined, a theoretical worst-case analysis of their
running times has been pending. We close this gap by giving nontrivial lower
bounds for all three algorithms. Furthermore, the bounds show that none of the
three algorithms is output-polynomial.

The paper is organized as follows. Section 2 contains some basic definitions,
a brief recapitulation of the sequential method and its analysis by Takata. In
Section 3 we show the DL- and the BMR-algorithm not to be output-polynomial.
Section 4 contains the analysis of the KS-algorithm. Some concluding remarks
follow in Section 5.

2 Basic Definitions and the Sequential Method

A hypergraph H = (V, E) consists of a set V of vertices and a finite family E of
subsets of V —the edges. If there is no danger of ambiguity, we also use the edge
set to refer to H. The size of H is the number of occurrences of vertices in the
edges. A transversal of H is a set t ⊆ V that has a non-empty intersection with
each edge of H. A transversal t is minimal if no proper subset of t is a transversal.
The set of all minimal transversals of H forms the transversal hypergraph Tr(H).
A hypergraph H is simple if it does not contain two hyperedges e, f with e ⊆ f .
By min(H) we denote the simple hypergraph consisting of the minimal hyper-
edges of H with respect to set inclusion. Since min(H) can be easily computed
in polynomial time and Tr(H) = Tr(min(H)) holds for every hypergraph H, we
concentrate on the transversal hypergraph generation for simple hypergraphs.
But even for simple hypergraphs the size of the transversal hypergraph may be
exponential. Hence, there cannot be an algorithm computing the transversal hy-
pergraph in polynomial time. A suitable notion of fast solvability for such kind
of problems is that of output-polynomial time [JPY88]. An algorithm is said to
be output-polynomial if its running time is bounded polynomially in the sum of
the sizes of the input and output.

Given simple hypergraphs H = {e1, e2, . . . , em} and H′ = {e′1, e
′
2, . . . , e

′
m′}

there are two different “unions”, namely

H ∪ H′ = {e1, e2, . . . , em, e′1, e
′
2, . . . , e

′
m′} and

H ∨ H′ = {ei ∪ e′j : i = 1, 2, . . . , m, j = 1, 2, . . . , m′}.

Proposition 2.1 ([Ber89]). Let H and H′ be two simple hypergraphs. Then
Tr(H ∪ H′) = min(Tr(H) ∨ Tr(H′)).
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Algorithm 1. The Sequential Method
1: Tr(H1) ← {{v} : v ∈ e1}
2: for i ← 2, . . . , m do
3: Tr(Hi) ← min(Tr(Hi−1) ∨ {{v} : v ∈ ei})
4: end for
5: output Tr(Hm)

The sequential method [Ber89] uses Proposition 2.1 to generate the transver-
sal hypergraph as follows. For a hypergraph H = {e1, e2, . . . , em} let Hi =
{e1, e2, . . . , ei}, i = 1, 2, . . . , m. We then have

Tr(Hi) = min(Tr(Hi−1) ∨ Tr({ei})) = min(Tr(Hi−1) ∨ {{v} : v ∈ ei})

and Tr(H) = Tr(Hm). This implies a straightforward iterative computation
process—the sequential method. A pseudocode listing is given in Algorithm 1.

Despite the simplicity of the sequential method it took a couple of years
until Takata [Tak02] presented a nontrivial lower bound using the following
inductively defined family of hypergraphs.

G0 = {{v1}} and
Gi = (A ∪ B) ∨ (C ∪ D), where A, B, C, D are vertex-disjoint copies of Gi−1.

Takata showed the sequential method not to be output-polynomial based on the
following observations.

Lemma 2.2 ([Tak02]). We have |VGi | = 4i, |Gi| = 22(2i−1), |Tr(Gi)| =
22i−1. For i ≥ 2 and any e ∈ Gi, it holds that |Tr(Gi \{e})\Tr(Gi)| ≥ 2(i−2)2i+2.

From Lemma 2.2 it follows that, independent of the edge ordering, the penulti-
mate (intermediate) result computed by the sequential method on input Gi is su-
perpolynomial in the size of the input and output (cf. the original paper [Tak02]
for more details).

3 The Algorithms of Dong and Li, and Bailey, Manoukian
and Ramamohanarao

The border-differential algorithm of Dong and Li [DL05] comes from the data
mining field and is intended for mining emerging patterns. The analogy to
the generation of hypergraph transversals was already pointed out by Bailey,
Manoukian, and Ramamohanarao [BMR03]. A pseudocode listing of the DL-
algorithm is given in Algorithm 2.

The algorithm was experimentally evaluated on many practical data mining
cases [DL05] whereas a theoretical analysis of the running time was left open.
For this purpose the conversion of the algorithm to the hypergraph setting is
very fruitful. The only observable difference between the sequential method and
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Algorithm 2. The DL-Algorithm
1: Tr(H1) ← {{v} : v ∈ e1}
2: for i ← 2, . . . , m do
3: Trguaranteed ← {t ∈ Tr(Hi−1) : t ∩ ei �= ∅}
4: ecovered

i ← {v ∈ ei : {v} ∈ Trguaranteed}
5: Tr(Hi−1)

′ ← Tr(Hi−1) \ Trguaranteed

6: e′
i ← ei \ ecovered

i

7: for all t′ ∈ Tr(Hi−1)
′ in increasing cardinality order do

8: for all v ∈ e′
i do

9: if t′ ∪ {v} is not superset of any t ∈ Trguaranteed then
10: Trguaranteed ← Trguaranteed ∪ {t′ ∪ {v}}
11: end if
12: end for
13: end for
14: Tr(Hi) ← Trguaranteed

15: end for
16: output Tr(Hm)

the DL-algorithm is that the DL-algorithm takes special care on how to perform
the minimization of Tr(Hi−1)∨{{v} : v ∈ ei}. But as Takata’s analysis showed,
the minimization is not the bottleneck of the sequential method. Thus, we can
extend Takata’s analysis of the sequential method in a straightforward way to
the DL-algorithm and get the same lower bound.

Theorem 3.1. The DL-algorithm is not output-polynomial. Its running time is
at least nΩ(log log n), where n denotes the size of the input and output.

Nevertheless, for hypergraphs with only a few edges of small size the DL-algo-
rithm has been shown experimentally to perform well [DL05]. This property is
exploited by the BMR-algorithm [BMR03] (cf. Algorithm 3 for the listing) as it
uses the DL-algorithm as a subroutine that computes all minimal transversals
for small hypergraphs (line 16 of the listing). The BMR-algorithm on input H
is invoked by the top-level call with the set E of edges of H and an empty set
Vpart. The global variable Tr is initially empty.

A bottleneck for the running time of the BMR-algorithm is that possibly many
of the recursively computed transversals—the set Tr′ in the listing—actually
are not minimal for the input hypergraph H. We concentrate on this issue and
construct a family G′

i of hypergraphs for which the BMR-algorithm computes
too many such non-minimal transversals to run in output-polynomial time. Let
G′(i) = {ei, fi}, where ei = {vi2−i+1, . . . , vi2} and fi = {vi2+1, . . . , vi2+i}. We
inductively define

G′
1 = {{v1}, {v2}}, and

G′
i = (G′

i−1 ∪ {{wi}}) ∨ G′(i), for i ≥ 2.

Note that G′
i−1, {{wi}} and G′(i) are pairwise vertex-disjoint simple hypergraphs

for i ≥ 2. To calculate the size of G′
i and of Tr(G′

i) we have to solve the recurrences
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Algorithm 3. The BMR-Algorithm
Input: a simple hypergraph, given by the set E of its hyperedges, and a set Vpart

of partitioning vertices
1: V ← set of all vertices in E
2: order vertices in increasing frequency ⇒ [v1, . . . , vk]
3: for i ← 1, . . . , k do
4: Epart ← ∅
5: V ← V \ {vi}
6: for all e ∈ E do
7: if vi �∈ e then
8: Epart ← min(Epart ∪ (e \ V ))
9: end if

10: end for
11: Vpart ← Vpart ∪ {vi}
12: a ← average edge cardinality of Epart multiplied by |Epart|
13: if |Epart| ≥ 2 and a ≥ 50 then
14: recursively call the BMR-algorithm on input Epart, Vpart

15: else
16: compute Tr(Epart) via the DL-algorithm
17: Tr′ ← Tr(Epart) ∨ {Vpart}
18: Tr ← min(Tr ∪ Tr′)
19: end if
20: Vpart ← Vpart \ {vi}
21: end for
22: return Tr

|G′
i| = 2 · |G′

i−1| + 2 and |Tr(G′
i)| = |Tr(G′

i−1)| + i2. With the initial conditions
|G′

1| = 2 and |Tr(G′
1)| = 1 we obtain

|G′
i| = 2i+1 − 2 and |Tr(G′

i)| =
2i3 + 3i2 + i

6

by iteration. As for the number |VG′
i
| of vertices of G′

i, we have |VG′
i
| = i2 +2i−1.

The BMR-algorithm iteratively partitions the input hypergraph to obtain
smaller hypergraphs where the transversal generation is feasible. The partition-
ing depends on the vertex frequencies. Hence, we first have to analyze the fre-
quencies of the vertices in G′

i.

Lemma 3.2. For i ≥ 2 let #v(i, j) and #w(i, j) respectively denote the number
of occurrences of vertex vj and wj in G′

i. Then

#w(i, j) = 0 for j ≥ i,

#w(i, j) > #w(i, j + 1) for 2 ≤ j < i,

#w(i, 2) = #v(i, 1) = #v(i, 2),
#v(i, j) = 0 for j ≥ i2 + i,

#v(i, j) = #v(i, k) for l2 − l + 1 ≤ j ≤ k ≤ l2 + l, with 1 ≤ l ≤ i,

#v(i, j) < #v(i, k) for 1 ≤ j < l2 − l + 1 ≤ k ≤ l2 + l, with 2 ≤ l ≤ i.



Lower Bounds for Three Algorithms 321

All of the above (in)equalities follow directly from the definition of G′
i or can be

easily proven by induction. From Lemma 3.2 it follows that the vertices from
G′(i) are the last vertices in the vertex ordering computed by the BMR-algorithm
on input G′

i. This is crucial for the next step of our analysis in which we examine
the recursive calls produced by the BMR-algorithm on input G′

i.

Lemma 3.3. For i ≥ 4, the BMR-algorithm on input G′
i recursively calls the

BMR-algorithm at least 2i times with a modified G′
i−1 ∪ {{wi}} as input. Here,

modified means that all edges of G′
i−1 ∪ {{wi}} may additionally include at most

half of the vertices of G′(i).

Proof. We only examine the last 2i vertices processed by the BMR-algorithm.
From Lemma 3.2 we know that these are exactly the vertices from G′(i)—
contained in the edges ei and fi. Let v′1, v′2, . . . , v′2i be any ordering of these
vertices. We consider the BMR-algorithm on that ordering.

Let the j-th vertex v′j , 1 ≤ j ≤ 2i, from the above ordering be the current
partitioning vertex (line 3 of the BMR-algorithm). After partitioning (lines 5
to 10), the remaining hypergraph has the form

(G′
i−1 ∪ {{wi}}) ∨ ({v′1, . . . , v

′
j−1} ∩ xi),

where xi = fi if v′j ∈ ei, and xi = ei if v′j ∈ fi. Hence, the remaining hypergraph
always is a G′

i−1 ∪ {{wi}} with at most half of the vertices from G′(i) in every
edge.

Altogether, for each of the last 2i vertices the minimal transversals of a modi-
fied G′

i−1 ∪{{wi}} have to be computed. Note that a modified G′
3 has 15 edges of

average size at least 5.4 and thus a ≥ 81 (line 12). Hence, for i ≥ 4 the last 2i ver-
tices invoke recursive calls of the BMR-algorithm with a modified G′

i−1 ∪{{wi}}
as input. 	


With Lemma 3.3 at hand we can analyze the number of non-minimal transversals
computed by the BMR-algorithm.

Lemma 3.4. Let i ≥ 4. For the number η(i) of non-minimal transversals com-
puted by the BMR-algorithm on input G′

i we have η(i) ≥ 2i−1 · i!.

Proof. From Lemma 3.3 it follows that there are 2i recursive calls with a mod-
ified G′

i−1 ∪ {{wi}} as input. Such a recursive call produces at least all of the
minimal and non-minimal transversals of G′

i−1 ∪ {{wi}} augmented by the cur-
rent partitioning vertex as transversals for G′

i. But since at least the partitioning
vertex is dispensable in these transversals, none of them is minimal for G′

i. There
are at least η(i−1)+ |Tr(G′

i−1)| such non-minimal transversals per recursive call.
Hence, we have to solve the recurrence

η(i) ≥ 2i · (η(i − 1) + |Tr(G′
i−1)|)

≥ 2i · η(i − 1).

A straightforward computation yields η(3) = 34. Hence, η(3) ≥ 22 · 3! and we
get η(i) ≥ 2i−1 · i! by iteration. 	
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Putting all pieces together we are able to give a superpolynomial lower bound
on the running time of the BMR-algorithm.

Theorem 3.5. The BMR-algorithm is not output-polynomial. Its running time
is at least nΩ(log log n), where n denotes the size of the input and output.

Proof. We consider the BMR-algorithm on input G′
i. By mi = |VG′

i
| · (|G′

i| +
|Tr(G′

i)|) we denote an upper bound on the size of the input and output. For
i ≥ 22 we have

mi = (i2 + 2i − 1) ·
(

2i+1 − 2 +
2i3 + 3i2 + i

6

)

≤ 23i.

The running time of the BMR-algorithm on input G′
i is at least η(i), the number

of non-minimal transversals generated. Thus, to analyze the running time we
will show that η(i) is superpolynomial in mi. It suffices to show that

2i−1 · i! > (23i)c, for any constant c.

This is equivalent to i − 1 + log(i!) > c · 3i, for any constant c. Using Stirling’s
formula we have log(i!) ≥ i·log i−i and thus it suffices to show i−1+i·log i−i >
c · 3i, for any constant c. This is equivalent to

log i

3
− 1

3i
> c, for any constant c.

Since the last equation obviously holds for sufficiently large i, we have proven
that η(i) is superpolynomial in mi, namely η(i) = m

Ω(log log mi)
i . 	


4 The Algorithm of Kavvadias and Stavropoulos

A first drawback of the sequential method or the BMR-algorithm that Kavva-
dias and Stavropoulos [KS05] observe is the memory requirement. Since newly
computed transversals have to be checked for minimality against the previously
computed minimal transversals, all the previously generated minimal transver-
sals have to be stored. The KS-algorithm tries to overcome this potentially expo-
nential memory requirement by two techniques. The first is to combine vertices
that belong exactly to the same hyperedges.

Definition 4.1 (generalized vertex, [KS05]). Let H be a hypergraph with
vertex set V . The set X ⊆ V is a generalized vertex of H if all vertices in X
belong to exactly the same hyperedges of H.

While adding edge ei, and hence generating the minimal generalized transversals
of Hi out of the minimal generalized transversals of Hi−1, the generalized vertices
have to be updated according to ei. Kavvadias and Stavropoulos characterize
the following three types of generalized vertices X of a minimal generalized
transversal t of Hi−1.
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– type α: X ∩ ei = ∅. Hence, X is a generalized vertex of Hi.
– type β: X ⊂ ei. Hence, X is a generalized vertex of Hi.
– type γ: X ∩ ei = ∅ and X ⊂ ei. Here, X is divided into X1 = X \ (X ∩ ei)

and X2 = X ∩ ei. Both X1 and X2 are generalized vertices of Hi.

Let κα(t, i), κβ(t, i), and κγ(t, i) denote the number of generalized vertices of type
α, β, and γ in t according to ei. When edge ei is added, the minimal generalized
transversal t of Hi−1 has to be split into 2κγ(t,i) generalized transversals of
Hi−1—the so-called offsprings of t—since all combinations of newly generalized
vertices have to be generated. If κβ(t, i) = 0, all these newly generated offsprings
are also minimal transversals of Hi. But if κβ(t, i) = 0, there is a special offspring
t0 of t that contains all the X1-parts of the γ-type generalized nodes of t. Hence,
t0 ∩ ei = ∅ and t0 has to be augmented by a vertex from ei to be a transversal
of Hi. All the other offsprings of t already are minimal transversals of Hi since
they contain at least one X2-part of a generalized vertex from t.

The second technique to overcome the potentially exponential memory re-
quirement is based on the observation that the sequential method is a form of
breadth-first search through a “tree” of minimal transversals. At the ith-level of
the “tree” the nodes are the minimal transversals of the partial hypergraph Hi.
The descendants of a minimal transversal t at level i are the minimal transversals
of Hi+1 that include t. Note that, since a node at level i + 1 may have several
ancestors at level i, the structure is not really a tree but very tree-like. The bot-
tom level consists of the minimal transversals of H. When cycling through this
“tree” breadth-first, one has to wait very long for the first minimal transversal
to be output and some nodes are visited several times because they have more
than one ancestor. To overcome the long time that may pass till the first minimal
transversal is output, the KS-algorithm uses a depth-first strategy. And to really
cycle through a tree and not a tree-like structure with some cycles, Kavvadias
and Stavropoulos introduce the notion of so-called appropriate vertices.

Definition 4.2 (appropriate vertex, [KS05]). Let H = {e1, . . . , em} be a
hypergraph with vertex set V and let t be a minimal transversal of the partial
hypergraph Hi of H. A generalized vertex v ∈ V \ t is an appropriate vertex for t
if no other vertex in t ∪ {v} except v can be removed and the remaining set still
be a transversal of Hi. The set appr(t, e) contains all appropriate vertices for t
in edge e.

Note that the special offspring t0 of a minimal generalized transversal t of Hi−1
has to be augmented by a vertex from appr(t, ei) only. All the other vertices
from ei can be skipped. Expanding only with appropriate vertices ensures that
no non-minimal transversals are generated and avoids regenerations. Another
advantage is that the previously described transversal “tree” structure becomes
a real tree (cf. the original paper [KS05] for more details).

All the described techniques—generalized vertices, depth-first strategy, ap-
propriate vertices—together with the main idea of the sequential method—
processing the edges one after the other—are used in the KS-algorithm (cf.
Algorithm 4 for the listing).
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Algorithm 4. The KS-Algorithm
1: express e1 as a set of one generalized vertex
2: compute the transversal t = Tr(e1)
3: AddNextHyperedge(t, e2)

4: procedure AddNextHyperedge(t, ei)
5: update the set of generalized vertices
6: express t and ei as sets of generalized vertices of level i
7: l ← 1
8: while GenerateNextTransversal(t, l) do
9: if ei is the last hyperedge then

10: output t′ without using generalized vertices
11: else
12: AddNextHyperedge(t′, ei+1)
13: l ← l + 1
14: end if
15: end while
16: end procedure

17: function GenerateNextTransversal(t, l)
18: if κβ(t, i) �= 0 then
19: if l ≤ 2κγ (t,i) then
20: t′ ← the l-th offspring of t
21: return true
22: else
23: return false
24: end if
25: else if κβ(t, i) = 0 then
26: if l ≤ 2κγ (t,i) − 1 then
27: t′ ← the l-th offspring of t except t0
28: return true
29: else if 2κγ(t,i) ≤ l ≤ 2κγ (t,i) − 1 + |appr(t, ei)| then
30: t′ = t0 augmented by the (l − 2κγ(t,i) + 1)-th vertex of appr(t, ei)
31: return true
32: end if
33: else
34: return false
35: end if
36: end function

As for the running time, the KS-algorithm is experimentally shown [KS05]
to be competitive to the sequential method, the BMR-algorithm, and an imple-
mentation of Algorithm A of Fredman and Khachiyan [BEGK03, FK96]. We will
show that the KS-algorithm is not output-polynomial.

First, we note that there are situations in which the KS-algorithm cannot find
an appropriate vertex. Consider for example the hypergraph H = {{v1, v5}, {v2,
v5}, {v3, v6}, {v4, v6}, {v5, v6}}. Having processed all but the last edge, there are
no generalized vertices left. We concentrate on the path down the transversal
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tree that corresponds to choosing v1, v2, v3, and v4. The intermediate transversal
is t = {v1, v2, v3, v4}. The only edge left is {v5, v6}. But the KS-algorithm cannot
find an appropriate vertex in this edge for t. Hence, there are dead ends in the
tree, namely leaves that do not contain a minimal transversal of the input H.
The next step is to find hypergraphs with too many such dead ends.

Lemma 4.3. For i ≥ 3, the number of dead ends the KS-algorithm has to visit
for any of Takata’s hypergraphs Gi as input is at least 2(i−2)2i+1, independent of
the edge ordering.

Proof. Consider the hypergraph family Gi of Takata defined in Section 2. From
Lemma 2.2 it follows that, whatever ordering of the edges is chosen, there are
at least 2(i−2)2i+2 nodes in the penultimate level of the transversal tree de-
scribed above Definition 4.2. The bottom level of the tree obviously contains
|Tr(Gi)| many nodes—one for each minimal transversal. Since |Tr(Gi)| = 22i−1

(cf. Lemma 2.2), there is a decrease in the number of nodes from the penul-
timate level to the bottom level for i ≥ 3. This decrease can only be caused
by dead ends in the penultimate level. Hence, for i ≥ 3 there are at least
2(i−2)2i+2 − 22i−1 ≥ 2(i−2)2i+1 many dead ends in the penultimate level. 	


Using Lemma 4.3 we can show that the KS-algorithm is not output-polynomial.

Theorem 4.4. The KS-algorithm is not output-polynomial. Its running time is
at least nΩ(log log n), where n denotes the size of the input and output.

Proof. We consider the KS-algorithm on input Gi. By mi = |VGi |·(|Gi|+|Tr(Gi)|)
we denote an upper bound on the size of Gi and Tr(Gi). From Lemma 2.2 we
have mi = 4i · (22(2i−1) + 22i−1), which results in mi ≤ 22i+2

.

Let η̂(i) denote the number of dead end situations visited by the KS-algorithm
on input Gi. The time, the KS-algorithm needs to compute Tr(Gi), is at least
the number of dead end situations visited. Since the KS-algorithm visits the
transversal tree depth-first, it visits all the dead end situations in the penultimate
level of the tree. With Lemma 4.3 we have η̂(i) ≥ 2(i−2)2i+1 for i ≥ 3. Thus,
to analyze the running time we will show that η̂(i) is superpolynomial in mi. It
suffices to show that 2(i−2)2i

> (22i+2
)c, for any constant c. This is equivalent to

i − 2 > 4c, for any constant c. Since this obviously holds for large enough i, we
have proven that η̂(i) is superpolynomial in mi, namely η̂(i) = m

Ω(log log mi)
i . 	


5 Concluding Remarks

We have proven superpolynomial lower bounds for the DL-, the BMR-, and
the KS-algorithm in terms of the size of the input and output. Thus, like the
underlying sequential method, these three algorithms are not output-polynomial.

We are not aware of any other nontrivial lower bounds for algorithms gener-
ating the transversal hypergraph although we suppose that none of the known
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algorithms is output-polynomial. Extending the existing lower bounds to other
algorithms seems to be not that straightforward.

Consider for instance the multiplication method suggested by Takata [Tak02].
Very recently Elbassioni proved a quasi-polynomial upper bound on the running
time [Elb06]. But giving a superpolynomial lower bound for the multiplication
method requires the construction of new hypergraphs. Takata’s hypergraphs Gi

and our hypergraphs G′
i are solved too fast by the multiplication method.

There are also no nontrivial lower bounds known for Algorithms A and B
of Fredman and Khachiyan [FK96]. Though Gurvich and Khachiyan [GK97]
note that it should be possible to give a superpolynomial lower bound for Algo-
rithm A using hypergraphs very similar to the Gi, the proof is still open. Giving
a lower bound for Algorithm B—considered to be the fastest known transversal
hypergraph algorithm—seems to be even more involved.

Acknowledgments. I thank Martin Mundhenk and the anonymous referees
for their valuable comments and suggestions.
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Abstract. We present hardness results, approximation heuristics, and
exact algorithms for bottleneck labeled optimization problems arising in
the context of graph theory. This long-established model partitions the
set of edges into classes, each of which is identified by a unique color.
The generic objective is to construct a subgraph of prescribed structure
(such as that of being an s-t path, a spanning tree, or a perfect matching)
while trying to avoid over-picking or under-picking edges from any given
color.

1 Introduction

Let G = (V, E) be a directed or undirected graph, with a weight function w :
E → R+ and a labeling function L : E → {c1, . . . , cq}. We interchangeably refer
to the elements of L(E) as labels or colors. In addition, for E′ ⊆ E and 1 ≤ i ≤ q,
we use Li(E′) = {e ∈ E′ : L(e) = ci} to denote the collection of ci-colored edges
in E′. With this notation in mind, the ci-color weight of an edge set E′ ⊆ E is
defined as

∑

e∈Li(E′) w(e), i.e., the total weight of all ci-colored edges in E′.
Now let P be a given graph property defined on subsets of E, such as that of

inducing a spanning tree, an s-t path, an s-t cut, or a perfect matching. The min-
max weighted labeled P problem (henceforth, WL-min-max P) asks to compute
an edge set E′ ⊆ E satisfying P that minimizes maxi

∑

e∈Li(E′) w(e), the maxi-
mum color weight of E′. Similarly, in max-min weighted labeled P (WL-max-min
P), the minimum color weight should be maximized. We refer to both versions
as weighted labeled bottleneck P problems. Furthermore, for ease of presentation,
we denote by UL-min-max P the unweighted special case of WL-min-max P ,
that asks to minimize the maximum color frequency. Analogous notation will
also be used for the corresponding max-min variant.

The complexity of WL-min-max P has been investigated for several graph
properties by Richey and Punnen [23], Punnen [21,22], and Averbakh and
� Due to space limitations, some proofs were omitted from this extended abstract.

We refer the reader to the full version of this paper (currently available online at
http://www.lamsade.dauphine.fr/∼monnot), in which all missing details are pro-
vided.
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Berman [5], in the context of “optimization problems under categorization”.
As indicated in [23,5], WL-min-max P contains both min-max weighted P and
min-sum weighted P as special cases. One simply has to assign a distinct label
to each edge in the former variant, and a single label for all edges in the latter
variant. Similar arguments lead to an analogous result, stating that max-sum
weighted P can be formulated in terms of WL-max-min P . Consequently, when-
ever min-sum weighted (respectively, max-sum weighted) P is NP-hard, so is
WL-min-max (respectively, max-min) P .

1.1 Our Results

We now provide, for each problem considered in this paper, a brief description
of our main findings, accompanied by a concise summary of previous work.

Labeled bottleneck s-t path. Previous work:

1. Averbakh and Berman [5] showed that WL-min-max s-t path is weakly NP-
hard, even in bicolored graphs. Moreover, they proved that UL-min-max s-t
path is NP-hard for an arbitrary number of colors. These results apply to
both directed and undirected graphs.

2. In [12] (problem [GT54], p. 203), it was mentioned that the pair-choice vertex
problem is NP-hard. Here, we are given a directed graph G = (V, E), two
specified nodes {s, t} ⊆ V , and a collection of pairwise-disjoint pairs of arcs.
The objective is to determine whether there exists an s-t path traversing at
most one arc from any given pair. Since UL-min-max directed s-t path can
be viewed as a special case of this problem (pairs correspond to colors), the
former cannot be approximated within a factor of 2 − ε for any fixed ε > 0,
unless P=NP.

3. It is not difficult to verify that UL-max-min s-t path generalizes the longest
path problem, even in monochromatic graphs. Therefore, the results of
Karger, Motwani and Ramkumar [15] imply that UL-max-min s-t path can-
not be approximated within a factor of 2O(log1−ε n) for any fixed ε > 0, unless
NP ⊆ DTIME(2O(log1/ε n)).

New results:

1. UL-max-min s-t path is not approximable at all, unless P=NP (Theorem 6).
2. For a fixed number of colors, there is a fully polynomial-time approximation

scheme for WL-min-max s-t path (Corollary 5).
3. For an arbitrary number of colors, there is an efficient algorithm that con-

structs a feasible solution to UL-min-max s-t path in undirected graphs
using O(

√
nOPT) edges from any given color (Section 4.2). Here, n = |V |

and OPT denotes the objective value of an optimal solution. For directed
graphs, the path we construct traverses O(

√
mOPT) edges from any color,

where m = |E| (Section 4.3).

Labeled bottleneck spanning tree. Previous work: Richey and Punnen [23]
showed that WL-min-max spanning tree is weakly NP-hard, even in bicolored
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graphs. We are not aware of previous work regarding the max-min version of
this problem.

New results:

1. WL-min-max spanning tree is strongly NP-hard (Theorem 9); it can be
approximated within a factor of O(log n) (Section 5.3).

2. UL-min-max spanning tree can be solved in polynomial time (Theorem 11).
3. UL-max-min spanning tree can be solved in polynomial time (Theorem 10).

WL-max-min spanning tree is strongly NP-hard (Theorem 9), and it is also
weakly NP-hard in planar bicolored graphs (Theorem 1).

4. For a fixed number of colors, there is a fully polynomial-time approxima-
tion scheme for both versions of weighted labeled bottleneck spanning tree
(Corollary 5).

Labeled bottleneck perfect matching. Previous work:

1. Richey and Punnen [23] showed that WL-min-max perfect matching is
weakly NP-hard, even in bicolored graphs. A stronger result has recently
been obtained by Punnen [22], who proved that even the simpler WL-min-
max assignment problem is strongly NP-hard.

2. Itai, Rodeh, and Tanimoto [14] proved that the following problem is NP-
complete: Given a bipartite graph and a collection of pairs of edges, decide
whether there exists a perfect matching that picks at most one edge from
any given pair. This problem remains NP-complete for a collection of disjoint
pairs [12] (problem [GT59], p. 203). Since UL-min-max perfect matching can
be viewed as a special case of this problem, the former cannot be approxi-
mated within a factor of 2 − ε for any fixed ε > 0, unless P=NP.

3. Karzanov [16], and Yi, Murty and Spera [26] proved that, given a complete
bipartite graph Kn,n with edges colored either red or blue, the problem of
finding a perfect matching consisting of exactly r red edges and n − r blue
edges is polynomial-time solvable1. Therefore, UL-min-max and UL-max-
min perfect matching in complete bipartite bicolored graphs can be solved
to optimality in polynomial time.

4. To our knowledge, WL-max-min perfect matching has not been studied in
the literature.

New results:

1. WL-max-min perfect matching is weakly NP-hard in bicolored planar graphs
(Theorem 1). UL-max-min perfect matching is not approximable at all in
general graphs, unless P=NP.

2. There is an approximation-preserving reduction from UL-min-max directed
s-t path to UL-min-max perfect matching.

3. For a fixed number of colors, there is a fully polynomial-time approximation
scheme for both versions of weighted labeled bottleneck perfect matching
(Corollary 5).

1 On the other hand, the complexity of this problem in general bipartite graphs is still
open.



The Complexity of Bottleneck Labeled Graph Problems 331

Due to space limitations, these results appear in the full version of this paper.

Labeled bottleneck s-t cut. Previous work: To our knowledge, both versions
of this problem have not been studied yet.

New results:

1. UL-min-max s-t cut is NP-hard in bicolored graphs (Theorem 3). When the
underlying graph is planar, UL-min-max s-t cut cannot be approximated
within a factor of 2 − ε for any fixed ε > 0, unless P=NP, and the weighted
version of this problem is weakly NP-hard when the graph is bicolored as
well (Theorem 1).

2. WL-max-min s-t cut is weakly NP-hard in planar bicolored graphs (Theorem
1). For an arbitrary number of colors, this problem is not approximable at
all in planar multigraphs, unless P=NP.

Due to space limitations, these results appear in the full version of this paper.

1.2 Related Work

In this section, we provide a brief survey of several frameworks to which our
contributions are related. Since some of the settings under consideration have
received a great deal of attention in recent years, it is beyond the scope of this
writing to present an exhaustive overview. We refer the reader to the undermen-
tioned papers and to the references therein for a more comprehensive review of
the literature.

Multiobjective combinatorial optimization [11,24,25]. The basic ingredi-
ents of a multiobjective optimization problem are typically: A set of instances
I; a set of feasible solutions F(x) associated with every instance x ∈ I; and a
collection of cost functions w1(x, y), . . . , wk(x, y) associated with every instance
x ∈ I and feasible solution y ∈ F(x). Given an instance x ∈ I, the goal is to
solve miny∈F(x){w1(x, y), . . . , wk(x, y)}, where the exact meaning of “min” de-
pends on the particular setting in question. For example, it may stand for Pareto
optimality (see Section 3), for aiming to minimize the worst cost function, or
for lexicographically minimizing the vector of cost functions. It is not difficult
to verify that WL-min-max P is actually a multiobjective optimization problem
in disguise: The set of feasible solutions consists of all edge sets that satisfy P ;
for every color ci there is a corresponding cost function wi which is exactly the
ci-color weight; and the goal is to minimize the maximum cost function. Minor
adjustments allow us to treat WL-max-min P in a similar way.

Robust discrete optimization [17,6]. Very informally, robust optimization
deals with decision making in environments of considerable data uncertainty,
trying to come up with solutions that hedge against the worst contingency that
may arise. Several alternative approaches for coping with uncertainty have been
explored and exploited; however, the scenario-based framework of Kouvelis and
Yu [17] seems most relevant to our paper. In this context, future developments
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are described by a finite number of scenarios, each of which corresponds to
a possible realization of the unknown model parameters. The objective is to
optimize against the worst possible scenario by using a min-max objective. Once
again, we note that WL-min-max P can be easily cast as a scenario-based robust
optimization problem: For every color ci there is an analogous scenario si, in
which the weight wsi(e) of an edge e ∈ E is set to w(e) if its color is ci, and to
0 otherwise. In addition, the cost of an edge set E′ ⊆ E in scenario si is given
by

∑

e∈E′ wsi (e), which is exactly the ci-color weight of this set.

The min-sum-max setting. A complementary line of work [23,5,22] on edge-
colored graphs attempts to minimize the sum of the maximal edge weight picked
from every given color. In particular, when all edges are associated with unit
weights, a problem of this nature reduces to that of constructing subgraphs
satisfying a required property while minimizing the number of colors used. Some
properties that have recently been studied in this context include spanning trees
[10,7,9,13], s-t paths [8,13], and perfect matchings [19].

2 Fixed Number of Colors: Hardness Results

2.1 Weak NP-Hardness in Bicolored Graphs

In what follows, we prove that several weighted labeled bottleneck problems are
NP-hard, even in planar bicolored graphs. As noted in Section 1.1, WL-min-max
P is known to be NP-hard in bicolored graphs for P ∈ {spanning tree, s-t path,
perfect matching} [23,5].

Theorem 1. WL-min-max P and WL-max-min P are NP-hard, even in planar
bicolored graphs, for P ∈ {s-t path, s-t cut, perfect matching, spanning tree}.

2.2 Strong NP-Hardness for s-t Cuts

Aissi, Bazgan and Vanderpooten [4] proved that min-max robust P with a fixed
number of scenarios admits pseudo-polynomial algorithms for s-t paths and span-
ning trees in general graphs and for perfect matchings in planar graphs. Since
WL-min-max P can be viewed as a special case of these settings (see Section
1.2), it follows that the corresponding min-max labeled problems have pseudo-
polynomial algorithms for a fixed number of colors.

In contrast, we proceed by proving that WL-min-max s-t cut is strongly NP-
hard in bicolored graphs. A similar result was established for bi-criteria s-t cut
[20, Thm. 6], and more recently for min-max robust s-t cut with two scenarios
[3, Cor. 1]. Unfortunately, in their reductions the resulting instances do not
correspond to WL-min-max s-t cut instances, and it appears as if we cannot
conclude the desired result for WL-min-max s-t cut in an obvious way. However,
we can slightly modify the construction of Papadimitriou and Yannakakis [20].
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Theorem 2. WL-min-max s-t cut is strongly NP-hard in bicolored graphs.

Proof. We propose a reduction from the bisection width problem. Given a con-
nected graph G = (V, E) on 2n vertices, a bisection is a cut (V1, V2) in G with
|V1| = |V2| = n. The decision version of bisection width asks to determine, for
a given integer k, whether there exists a bisection with at most k edges. This
problem is known to be NP-complete [12] (problem [ND17], p. 210).

Given an instance of bisection width, as described above, we construct an in-
stance I = (G′, w, L) of WL-min-max s-t cut, with G′ = (V ′, E′) and L(E′) =
{c1, c2}, as follows:

– G′ has two additional vertices, s and t, each of which is connected to every
vertex of G.

– L(s, v) = c1 for every v ∈ V ; all other edges have color c2.
– w(s, v) = k(n + 1) and w(t, v) = kn for every v ∈ V ; w(e) = n for every

original edge e ∈ E.

We now argue that G has a bisection of size at most k if and only if I has
an s-t cut whose min-max value is at most kn(n + 1). If (V1, V2) is a bisection
with at most k edges, then ({s} ∪ V1, {t} ∪ V2) is an s-t cut in G′ that picks
c1-colored edges of total weight

∑

e∈({s},V2) w(e) = kn(n + 1) and c2-colored
edges of total weight

∑

e∈({t},V1) w(e)+
∑

e∈(V1,V2) w(e) = kn2 +kn = kn(n+1).
Conversely, let ({s} ∪ V1, {t} ∪ V2) be an s-t cut in G′ with min-max value of at
most kn(n + 1). Since each c1-colored edge in this cut has a weight of k(n + 1),
it follows that |V2| ≤ n. In addition, the c2-colored edges in this cut have a total
weight of n|E′′|+kn|V1|, where E′′ = (V1, V2), and we conclude that |V1| ≤ n+1.
Now, if |V1| = n+1 the inequality n|E′′|+kn|V1| ≤ kn(n+1) implies E′′ = ∅, so
G is clearly disconnected (contradicting our initial assumption); thus |V1| ≤ n.
Finally, since |V1| ≤ n and |V2| ≤ n, we have |V1| = |V2| = n, and therefore
(V1, V2) is a bisection with at most k edges. 	


Theorem 3. UL-min-max s-t cut is NP-hard in bicolored graphs.

Proof. To prove the theorem, we show that a ρ-approximation for UL-min-max
s-t cut can be converted in polynomial time into a ρ-approximation for WL-min-
max s-t cut when the edge weights are integers upper bounded by a polynomial
in n. The theorem follows from the combination of this result and Theorem 2.

Let I = (G, w, L) be an instance of WL-min-max s-t cut, where G = (V, E)
has n vertices and maxe∈E w(e) = O(nO(1)). We replace each edge e = (u, v) ∈ E
by a collection H(e) of w(e) edge-disjoint paths of length two (connecting u and
v), each edge of which is colored by L(e). The vertices u and v will be called
extreme vertices of H(e), whereas other vertices of H(e) will be called inner
vertices. We refer to the resulting UL-min-max s-t cut instance as I ′ = (G′, L′).

Consider an s-t cut (S′, T ′) in G′, with s ∈ S′ and t ∈ T ′. We iteratively apply
the following procedure for each original edge e ∈ E: If the extreme vertices of
H(e) appear in the same set of the partition, assign all inner vertices of H(e)
to that set. These changes can only decrease the total weight of L(e)-colored
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edges in the current s-t cut, and therefore also its min-max value. From the
resulting s-t cut (S′, T ′), we can find an s-t cut in G of identical min-max value
by considering (S′ ∩ V, T ′ ∩ V ), the restriction of this cut to G. 	


3 Fixed Number of Colors: An FPTAS

In what follows, we present a fully polynomial-time approximation scheme for
weighted labeled bottleneck s-t path, spanning tree, and perfect matching, for a
fixed number of colors.

Approximate Pareto curves. Let P be a property described in Section 1,
and consider the multiobjective version of P (henceforth, MultikP). An instance
I of this problem consists of a graph G = (V, E), and a weight vector w(e) =
(w1(e), . . . , wk(e)) for each edge e ∈ E. An edge set E′ ⊆ E forms a feasible
solution to MultikP if it satisfies P , and the objective value of E′ is given by the
vector (

∑

e∈E′ w1(e), . . . ,
∑

e∈E′ wk(e)). In a minimization problem, we say that
a solution E′ is dominated by E′′ if

∑

e∈E′′ wi(e) ≤
∑

e∈E′ wi(e) for every 1 ≤ i ≤
k, and the inequality is strict for at least one index; the inequalities are reversed
for a maximization problem. The goal is to compute the Pareto curve C(I), which
is the set of all undominated solutions to I. Finally, an ε-approximate Pareto
curve for the minimization (respectively, maximization) version of MultikP is a
set Cε(I) of solutions such that

1. |Cε(I)| is polynomially bounded in terms of the input size and 1/ε.
2. For every E∗ ∈ C(I), there exists E′ ∈ Cε(I) with

∑

e∈E′ wi(e) ≤ (1 +
ε)

∑

e∈E∗ wi(e) for every 1 ≤ i ≤ k (respectively,
∑

e∈E′ wi(e) ≥ (1 −
ε)

∑

e∈E∗ wi(e)).

When k is fixed, Papadimitriou and Yannakakis [20, Cor. 5] proposed an FP-
TAS for constructing ε-approximate Pareto curves of multiobjective s-t walk,
spanning tree, and perfect matching.

The approximation scheme. We now relate the approximability of several
weighted labeled bottleneck problems to that of their multiobjective counter-
parts. This approach has already been suggested in the context of robust op-
timization [17,2], implying that results similar to those described in the next
theorem can be immediately derived for the min-max variants.

Theorem 4. For a fixed number of colors, the efficient construction of an ε-
approximate Pareto curve for the maximization version of MultikP implies a
(1 − ε)-approximation to WL-max-min P. A similar result for the minimization
version leads to a (1 + ε)-approximation to WL-min-max P.

By combining Theorem 4 and the results of Papadimitriou and Yannakakis [20]
mentioned earlier, Corollary 5 follows. However, an important remark is in place.
Even though the algorithm in [20] constructs an ε-approximate Pareto curve of
multiobjective s-t walk, note that any such walk can be converted (by eliminating
cycles) to an s-t path of no greater min-max objective value. An analogous claim
regarding the max-min version is incorrect.
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Corollary 5. For a fixed number of colors, weighted labeled bottleneck spanning
tree and perfect matching admit a fully polynomial-time approximation scheme.
A similar result also holds for WL-min-max s-t path.

4 Arbitrary Number of Colors: s-t Paths

For a fixed number of colors, UL-min-max s-t path is polynomial time solvable.
This claim follows from the observation that we can decide whether there exists
a walk connecting s and t whose objective value is exactly p ∈ {1, . . . , n − 1} by
means of dynamic programming. In contrast, we proceed by showing that both
versions of the problem under consideration become NP-hard for an arbitrary
number of colors. We complement these results by devising efficient approxima-
tion algorithms.

4.1 Hardness Results

We now derive new inapproximability bounds for both versions of labeled bot-
tleneck s-t path, in undirected as well as directed graphs. To our knowledge,
these results do not follow from existing work.

Theorem 6. UL-min-max s-t path is not (2 − ε)-approximable for any fixed
ε > 0, and UL-max-min s-t path is not approximable at all, unless P=NP.
Similar results hold for directed graphs.

4.2 UL-Min-Max s-t Path: Approximating the Undirected Case

In what follows, we show how to efficiently construct an undirected s-t path us-
ing O(

√
nOPT) edges from any given color, where n = |V | and OPT denotes

the cost of an optimal solution. An essential building block of our algorithm is a
constant-factor approximation for multi-budget maximum coverage. An instance
of this problem consists of a ground set U and a collection of subsets S ⊆ 2U ,
which is partitioned into S1, . . . , Sr. Given an integral budget bt for each part St,
the objective is to find a subcollection S′ ⊆ S such that S′ picks at most bt sets
from each St and such that the number of elements covered by S′ is maximized.
For these particular settings, a performance guarantee of 1 − 1/e can be achieved
by adopting the maximum coverage heuristic of Ageev and Sviridenko [1, Rem. 2].
The algorithm. For simplicity of presentation, it would be convenient to assume
that OPT is known in advance. Clearly, this assumption can be enforced by
testing 1, . . . , n−1 as candidate values, and returning the best solution found. We
also make use of Δ = Δ(n, OPT) as a parameter whose value will be determined
later.

1. F ← ∅, H ← G.
2. While distH(s, t) > Δ

(a) Create a multi-budget maximum coverage instance by: The ground set is
V (H); for each edge e ∈ E(H) there is a corresponding subset Ve, consist-
ing of the endpoints of e; these subsets are partitioned into {S1, . . . , Sq},
where Si = {Ve : L(e) = ci}; each Si has a budget of OPT.
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(b) Approximate the instance defined above, and let F+ be the collection of
edges e ∈ E(H) for which Ve is picked by the resulting solution.

(c) F ← F ∪ F+, H ← the contraction of F+ in H .
3. Let P be a shortest s-t path in H . Return F ∪ P .

Theorem 7. By setting Δ =
√

nOPT, the subgraph induced by F ∪ P picks
O(

√
nOPT) edges from any given color.

Proof. We begin by showing that, for any value of Δ, step 2 terminates within
no more than 4n/Δ iterations. For this purpose, it is sufficient to prove that
the number of vertices in H decreases by at least Δ/4 whenever an edge set is
contracted. Let E∗ ⊆ E be an optimal solution, with maxi |Li(E∗)| = OPT, and
consider a single iteration. Since the edges E∗ ∩ E(H) form a subgraph of H
containing an s-t path, it follows that {Ve : e ∈ E∗ ∩E(H)} is a feasible solution
to the multi-budget maximum coverage instance defined in step 2a. Moreover, as
the s-t distance in H is at least Δ, the latter solution satisfies |

⋃

e∈E∗∩E(H) Ve| ≥
Δ. Consequently, for the current F+ we must have |

⋃

e∈F+ Ve| ≥ (1 − 1/e)Δ,
implying that the contraction of F+ decreases the number of vertices by at least
(1 − 1/e)Δ/2 > Δ/4.

Now, starting with an empty set of edges, in each iteration of step 2 we
augment F with an edge set F+ that contains at most OPT edges from each
color. Therefore, by setting Δ =

√
nOPT, the maximum number of edges we pick

from any given color is at most (4n/Δ)OPT+|P | ≤ (4n/Δ)OPT+Δ = 5
√

nOPT.
	


4.3 UL-Min-Max s-t Path: Approximating the Directed Case

In the following, we demonstrate that ideas similar to those presented in Section
4.2 can be employed to construct a directed s-t path using O(

√
mOPT) arcs

from any given color. Here, m = |E| and OPT denotes the cost of an optimal
solution.

The algorithm. Once again, we assume that OPT is known in advance, and
let Δ = Δ(m, OPT) be a parameter whose value will be determined later.

1. F ← ∅, χE\F ← characteristic function of E \ F .
2. While distχE\F

(s, t) > Δ
(a) Create a multi-budget maximum coverage instance by: The ground set

is V ; for each arc e = (u, v) ∈ E \ F there is a corresponding singleton
Ve = {v}; these subsets are partitioned into {S1, . . . , Sq}, where Si =
{Ve : L(e) = ci}; each Si has a budget of OPT.

(b) Approximate the instance defined above, and let F+ be the collection of
arcs e ∈ E \ F for which Ve is picked by the resulting solution.

(c) F ← F ∪ F+.
3. Let P be a shortest s-t path (with respect to χE\F ). Return P .
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Theorem 8. By setting Δ =
√

mOPT, the path P traverses O(
√

mOPT) arcs
from any given color.

Proof. We first demonstrate that step 2 consists of at most 2m/Δ iterations, by
showing that we always have |F+| ≥ Δ/2. Let P ∗ be an optimal solution, with
maxi |Li(P ∗)| = OPT. In each iteration, {Ve : e ∈ P ∗ \ F} is a feasible solution
to the multi-budget maximum coverage instance defined in step 2a. Moreover, as
distχE\F

(s, t) > Δ, the latter solution satisfies |
⋃

e∈P ∗\F Ve| ≥ Δ. Consequently,
we must have |F+| ≥ |

⋃

e∈F+ Ve| ≥ (1 − 1/e)Δ > Δ/2.
Now, starting with an empty set of arcs, in each iteration of step 2 we augment

F with an arc set F+ that contains at most OPT arcs from each color. Therefore,
by setting Δ =

√
mOPT, the maximum number of edges P traverses from any

given color is at most |F | + Δ ≤ (2m/Δ)OPT + Δ ≤ 3
√

mOPT. 	


5 Arbitrary Number of Colors: Spanning Trees

In Corollary 5 we have shown that, for a fixed number of colors, both versions
of weighted labeled spanning tree admit an FPTAS. In this section, we provide
hardness results, exact algorithms, and approximation algorithms for the general
case of an arbitrary number of colors.

5.1 Hardness Results

As indicated in Section 1.1, WL-min-max spanning tree is known to be weakly
NP-hard [23]. Here, we show that both weighted labeled bottleneck spanning
tree problems are in fact strongly NP-hard.

Theorem 9. Both weighted labeled bottleneck spanning tree problems are
strongly NP-hard.

5.2 Exact Algorithms

Broersma and Li [7] devised a polynomial-time algorithm based on matroid
intersection for computing a spanning tree using a maximum number of colors.
Here, we prove that both unweighted labeled bottleneck spanning tree problems
can also be solved in polynomial time by utilizing matroid intersection. It is
interesting to observe that this result is in contrast to the weighted case, which
was shown to be strongly NP-hard in Theorem 9.

Theorem 10. UL-max-min spanning tree can be solved to optimality in poly-
nomial time.

Proof. Given an instance (G, L) of UL-max-min spanning tree, with G = (V, E),
we may assume without loss of generality that OPT is known in advance, since
we can test 0, . . . , n − 1 as candidate values for this parameter, and return the
best solution found. Now, since the optimal tree picks at least OPT edges from
every color in L(E) = {c1, . . . , cq}, it follows that there exists a forest picking
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exactly OPT edges from any given color. Moreover, such a forest can be efficiently
constructed by computing a maximum cardinality intersection2 of the matroids
M1 and M2, where:

– M1 = (E, I1) is the graphic matroid, that is, I1 = {F ⊆ E : F is a forest}.
– M2 = (E, I2) is a partition matroid, with I2 = {F ⊆ E : |Li(F )| ≤

OPT for every 1 ≤ i ≤ q}.

We complete the resulting forest into a spanning tree in an arbitrary way, noting
that this augmentation leaves the objective value unchanged. 	


Theorem 11. UL-min-max spanning tree can be solved to optimality in poly-
nomial time.

Proof. The algorithm for this version is nearly identical to the one given for
UL-max-min spanning tree; however, an important remark is in place. After we
“guess” OPT and compute a maximum cardinality intersection F ⊆ E of M1 and
M2, there is no need to complete the subgraph induced by F into a spanning
tree, implying that its objective value remains unchanged. This claim follows
from observing that |F | = |V | − 1, since the edge set of the optimal spanning
tree forms a feasible solution to the matroid intersection problem we solve. 	


5.3 WL-Min-Max Spanning Tree: A Logarithmic Approximation

In what follows, we show that a matroid intersection algorithm is not only a
useful tool for solving the unweighted version to optimality; rather, it can also
be applied to approximate the weighted min-max version.
The algorithm. For ease of exposition, we assume without loss of generality
that an estimator of the optimum W ∈ [OPT, 2 · OPT] is known in advance.
Otherwise, for every 0 ≤ k ≤ �log(nwmax/wmin)�, we can test 2kwmin as a
candidate value and return the best solution found, where wmin and wmax denote
the minimum and maximum non-zero edge weights, respectively.

1. Delete all edges of weight greater than W , and define a partition of the
undeleted edges as follows:
(a) For every 1 ≤ i ≤ q and 0 ≤ k ≤ �log n�, let Ei,k be the set of edges e

with L(e) = ci and w(e) ∈ (W/2k+1, W/2k].
(b) In addition, let Efree be the set of remaining edges (of weight at most

W/n).
2. By applying a matroid intersection algorithm, find a spanning tree T that

picks at most 2k+1 edges from each Ei,k and any number of edges from Efree.
Return T .

Note that the suggested algorithm is well-defined. To establish this claim, it is
sufficient to show that a spanning tree satisfying the constraints of step 2 indeed
exists. It is easy to verify that all edges of the optimal tree T ∗ survive step 1
and that |T ∗ ∩ Ei,k| ≤ 2k+1, or otherwise there is a color ci from which T ∗ picks
edges of total weight strictly greater than W ≥ OPT.
2 See, for example, [18, Chap. 8].
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Theorem 12. The edges picked by T from any given color have an overall
weight of O(log n) · OPT.

Proof. Consider some color ci. Then,

∑

e∈Li(T )

w(e) =
�log n�
∑

k=0

∑

e∈T∩Ei,k

w(e) +
∑

e∈Li(T∩Efree)

w(e)

≤
�log n�
∑

k=0

(

|T ∩ Ei,k| · max
e∈T∩Ei,k

w(e)
)

+ |T ∩ Efree| · max
e∈T∩Efree

w(e)

≤
�log n�
∑

k=0

2k+1 W

2k
+ (n − 1)

W

n
≤ (2�log n� + 3)W ≤ (4�log n� + 6)OPT .

The second inequality holds since |T ∩ Ei,k| ≤ 2k+1 for every 0 ≤ k ≤ �log n�,
and since |T ∩ Efree| ≤ n − 1. The last inequality follows from the assumption
W ≤ 2 · OPT. 	
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9. Brüggemann, T., Monnot, J., Woeginger, G.: Local search for the minimum la-
bel spanning tree problem with bounded color classes. Operations Research Let-
ters 31(3), 195–201 (2003)

10. Chang, R.-S., Leu, S.-J.: The minimum labeling spanning trees. Information
Processing Letters 63(5), 277–282 (1997)

11. Ehrgott, M., Gandibleux, X. (eds.): Multiple Criteria Optimization: State of the
Art Annotated Bibliographic Survey. International Series in Operations Research
and Management Science, vol. 52. Kluwer Academic Publishers, Dordrecht (2002)



340 R. Hassin, J. Monnot, and D. Segev

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

13. Hassin, R., Monnot, J., Segev, D.: Approximation algorithms and hardness results
for labeled connectivity problems. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006.
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