

Savitribai Phule Pune University

(Formerly University of Pune)

Three Year B.Sc. Degree Program in Computer Science

(Faculty of Science & Technology)

S.Y.B.Sc. (Computer Science)

Choice Based Credit System Syllabus To be implemented from Academic Year 2020-2021

S. Y. B. Sc.(Computer Science)

Semester III

(Total credits=22)

Course	Paper	Paper title	Credits	Evaluation		uation
type	Code			СА	UE	TOTAL
	CS 231	Data Structures and	2	15	35	50
		Algorithms – I				
CC-VIII	CS 232	Software Engineering	2	15	35	50
	CS 233	Practical course on CS 231	2	15	35	50
		and CS 232				
		Mathematics - I	2	15	35	50
		Mathematics - II	2	15	35	50
CC-IX		Practical course in	2	15	35	50
		Mathematics				
		Electronics - I	2	15	35	50
CC-X		Electronics - II	2	15	35	50
		Practical course in	2	15	35	50
		Electronics				
AECC-I		Environment Science – I	2			
AECC-II		Language Communication – I	2			

Semester IV

(Total credits=22)

Course	Paper	Paper title	Credits	Evaluation		ntion
type	Code			СА	UE	TOTAL
	CS 241	Data Structures and	2	15	35	50
		Algorithms – II				
CC-XI	CS 242	Computer Networks - I	2	15	35	50
	CS 243	Practical course on CS 241	2	15	35	50
		and CS 242				
		Mathematics - I	2	15	35	50
		Mathematics - II	2	15	35	50
CC-XII		Practical course in	2	15	35	50
		Mathematics				
		Electronics - I	2	15	35	50
		Electronics - II	2	15	35	50
CC-XIII		Practical course in	2	15	35	50
		Electronics				
AECC-I		Environment Science – II	2			
AECC-II		Language Communication –II	2			

- Each theory Lecture time for S.Y. B.Sc Computer Science is of 50 min (3 lectures/ week for 2 credit course)
- Each practical session time for S.Y. B.Sc Computer Science is of 4 hrs 20 minutes (260 min)
- Practical batch size =12

Savitribai Phule Pune University S.Y.B.Sc. (Computer Science) Computer Science Paper - I Course Code: CS 231 Title : Data Structures and Algorithms – I					
Teaching Scheme 3 Lectures / week (50 mins duration)	Teaching SchemeNo. of CreditsExamination Scheme3 Lectures / week (50 mins duration)2IE : 15 marksUE: 35 marksUE: 35 marks				
Prerequisites: Basic knowledge of algorithms and problem solving Knowledge of C Programming Language					
 Course Objectives 1. To learn the systematic way of solving problem 2. To understand the different methods of organizing large amount of data 3. To efficiently implement the different data structures 4. To efficiently implement solutions for specific problems 5. To apply linear data structures. 					
 Course Outcomes: On completion of the course, student will be able to 1. To use well-organized data structures in solving various problems. 2. To differentiate the usage of various structures in problem solution. 3. Implementing algorithms to solve problems using appropriate data structures. 					
Course Contents	Course Contents				
Chapter 1 Introduction to	Data Structures and Algorith	m Analysis	4 lectures		
 1.1 Introduction 1.1.1 Need of Data Structure 1.1.2 Definitions - Data 1.1.3 Types of Data Structure 1.2 Algorithm analysis 1.2.1 Space and time complexidifferent functions of n, example 1.2.2 Best, Worst, Average case Theta θ), Problems on time complexidities 	cture and information, Data type, Dat actures ty, Graphical understanding of t les of linear loop, logarithmic,qu e analysis, Asymptotic notations mplexity calculation.	a object, ADT, Da he relation betwee adratic loop etc. (Big O, Omega Ω	ata Structure en 2,		
Chapter 2Array as a Data Structure10 lectures					
 2.1 ADT of alray, Operations 2.2Array applications - Searching 2.2.1 Sequential search, variations - Sentinel search, Probability search, ordered list search 2.2.2 Binary Search 2.2.3 Comparison of searching methods 2.3 Sorting Terminology- Internal, External, Stable, In-place Sorting 2.3.1 Comparison Based Sorting - Lower bound on comparison based sorting, Methods- Bubble Sort, Insertion Sort, Selection Sort, Algorithm design strategies - Divide and Conquer strategy, Merge Sort, Quick Sort, complexity analysis of sorting methods. 					

2.3.2 Non Comparison Based Sorting: Counting Sort, Radix Sort, complexity analysis. 2.3.3 Comparison of sorting methods Chapter 3 Linked List **10 lectures** 3.1 List as a Data Structure, differences with array. 3.2 Dynamic implementation of Linked List, internal and external pointers 3.3 Types of Linked List – Singly, Doubly, Circular 3.4 Operations on Linked List - create, traverse, insert, delete, search, sort, reverse, concatenate, merge, time complexity of operations. 3.5 Applications of Linked List – polynomial representation, Addition of two polynomials 3.6 Generalized linked list – concept, representation, multiple-variable polynomial representation using generalized list. Chapter 4 Stack **6** lectures 4.1 Introduction 4.2 Operations – init(), push(), pop(), isEmpty(), isFull(), peek(), time complexity of operations. 4.3 Implementation- Static and Dynamic with comparison 4.4 Applications of stack 4.4.1 Function call and recursion, String reversal, palindrome checking 4.4.2 Expression types - infix, prefix and postfix, expression conversion and evaluation (implementation of infix to postfix, evaluation of postfix) 4.4.3Backtracking strategy - 4 queens problem (implementation using stack) Chapter 5 Oueue **6** lectures 5.1 Introduction 5.2 Operations - init(), enqueue(), dequeue(), isEmpty(), isFull(), peek(), time complexity of operations, differences with stack. 5.3 Implementation - Static and Dynamic with comparison 5.4 Types of Queue - Linear Queue, Circular Queue, Priority Queue, Double Ended Queue (with implementation) Applications - CPU Scheduling in multiprogramming environment, Round robin 5.5 algorithm **Reference Books:** 1. Classic Data Structures-D. Samanta, Prentice Hall India Pvt. Ltd. 2. Fundamentals of Data Structures in C- Ellis Horowitz, SartajSahni,Susan Anderson-Freed, 2nd Edition, Universities Press. 3. Data Structures using C and C++-YedidyahLangsam, Moshe J. Augenstein, Aaron M. Tenenbaum, Pearson Education 4. Data Structures: A Pseudo code approach with C, Richard Gilberg, Behrouz A. Forouzan, Cengage Learning. 5. Introduction to Data Structures in C-Ashok Kamthane, Pearson Education 6. Algorithms and Data Structures, Niklaus Wirth, Pearson Education

Savitribai Phule Pune University S.Y.B.Sc. (Computer Science) Computer Science Paper -II Course Code: CS 232 Title : Software Engineering				
Taaching Schome	No. of Credits	Exominati	on Schomo	
3 lectures / week (50 mins	No. of Cleans 2	Examination IE · 15	marks	
duration)	2		marks	
Prerequisites		01.33	marks	
ER Modeling				
Course Objectives				
 To get knowledge and under To learn analysis and design 	rstanding of software engineer principles for software project	ing discipline. et development.		
Course Outcomes				
On completion of the course, s	tudent will be able to-			
1. Compare and chose a p	process model for a software process	roject developme	ent.	
2. Identify requirements a	nalyze and prepare models.			
3. Prepare the SRS, Desig	gn document, Project plan of a	given software s	system.	
Course Contents				
Course Contents				
Chapter 1 Title : Introdu Process Model	iction To Software Engineer	ing and	8 lectures	
1.1 Definition of Software	5			
1.2 Nature of Software Engi	neering			
1.3 Changing nature of softw	/are			
1.4 Software Process				
1.4.1 The Process F	ramework			
1.4.2 Umbrella Acti	vities			
1.4.3 Process Adapt	ation			
1.5 Generic Process Model				
1.6 Prescriptive Process Mo	dels			
1.6.1 The Waterfall	Model			
1.6.2 Incremental F	Process Models			
1.6.3 Evolutionary	Process Models			
1.6.4 Concurrent M	lodels			
1.6.5 The Unified Process				
Chapter 2 Title : Agile De	evelopment		5lectures	
2.1 What is Agility?	•			
2.2 Agile Process				
2.2.1 Agility Principles				
2.2.2 The Politics Of Agile Development				
2.2.3 Human Factors				
2.3 Extreme Programming(XP)				
2.3.1XP Values				
2.3.2XP Process				
2.3.3 Industrial XP				

2.4 Adaptive	Software Development(ASD)				
2.5 Scrum					
2.6 Dynamic	System Development Model (DSDM)				
2.7 Agile Uni	fied Process (AUP)				
_					
Chapter 3	Title : Requirements Analysis	7 lectures			
3.1 Requirer	nent Elicitation,				
3.2 Software	e requirement specification (SRS)				
3.2.1 De	eveloping Use Cases (UML)				
3.3 Building	the Analysis Model				
3.3.1 Ele	ements of the Analysis Model				
3.3.2 An	alysis Patterns				
3.3.3 Ag	ile Requirements Engineering				
3.4 Negotiat	ing Requirements				
3.5 Validatii	ng Requirements				
Chapter 4	Title : Requirements Modeling	10 lectures			
4.1 Introduct	on to UML				
4.2Structural	Modeling				
4.2.1 Use	case model				
4.2.2Clas	s model				
4.3Behaviora	l Modeling				
4.3.1 Seq	uence model				
4.3.2 Act	vity model				
4.3.3 Con	nmunication or Collaboration model				
4.4 Architect	ural Modeling				
4.4.1 Con	nponent model				
4.4.2 Arti	fact model				
4.4.3 De	ployment model				
Chapter 5	Title Decign Concents	Glaatumag			
5 1 Design D		olectures			
5.1 Design Pl	ocess				
5.1.1 SOID	lution of Software Design				
5.1.2 EVO	onconta				
5.2 Design C	traction				
5.2.1 AUS	hitecture				
5.2.2 AIC	5.2.2 Architecture				
5.2.5 Patterns 5.2.4 Separation of Concerns					
5.2.4 Separation of Concerns 5.2.5 Modularity					
5.2.5 Information Hiding					
5.2.7 Functional Independence					
5.2.7 Puteronal independence					
5.2.9 Aspects					
5.2.10 Refactoring					
5 2 11 Ot	5.2.10 Relationing 5.2.11 Object Oriented Design Concepts				
5 2 12 De	sign Classes				
5 2 13 De	pendency Inversion				
5.2.14 De	sign for Test				
5.3 The Desig	zn Model				
5.3.1 Dat	a Design Elements				
5 2 2 Am	5.3.1 Data Design Elements 5.3.2 Architectural Design Elements				

- 5.3.3 Interface Design Elements
- 5.3.4 Component-Level Diagram
- 5.4.5 Deployment-Level Diagram

Reference Books:

- 1. Software Engineering : A Practitioner's Approach Roger S. Pressman, McGraw hill(Eighth Edition) ISBN-13: 978-0-07-802212-8, ISBN-10: 0-07-802212-6
- A Concise Introduction to Software Engineering Pankaj Jalote, Springer ISBN: 978-1-84800-301-9
- 3. The Unified Modeling Language Reference Manual James Rambaugh, Ivar Jacobson, Grady Booch ISBN 0-201-30998-X

Savitribai Phule Pune University S.Y.B.Sc. (Computer Science) **Computer Science Paper - III Course Code: CS 233** Title : Practical course on CS 231 (Data Structures and Algorithms I) and CS 232 (Software Engineering)

Teaching Scheme	No. of Credits	Examination Scheme
4 hrs 20 mins / week	2	IE : 15 marks
Batch Size : 12		UE: 35 marks

Operating Environment:

For Data Structures:

- **Operating system:** Linux
- Editor: Any linux based editor like vi, gedit etc.
- **Compiler** : cc or gcc

Lab Book:

The lab book is to be used as a hands-on resource, reference and record of assignment submission and completion by the student. The lab book contains the set of assignments which the student must complete as a part of this course.

Programming Assignments:

Programs should be done individually by the student intheir respective login. The codes should be uploaded on either the local server, Moodle, Github or any open source LMS. Print-outs of the programs and output may be taken but not mandatory for assessment.

Assessment:

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments performance of student. Each lab assignment assessment will be assigned grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include-timely completion, performance, innovation, efficient codes and good programming practices.

• Internal Evaluation :

- o 10 marks will be given based on a mini project of Software Engineering.
- 5 marks will be allocated for Assignment completion and practical attendance.

• University Evaluation :

• The Practical slip will be of 35 Marks which will be based on Data structures.

Course Contents:

Suggested Assignments for Data Structures – I

Assignment1: Searching Algorithms

Implementation of searching algorithms to search an element using: Linear Search, Sentinel Search, Binary Search (with time complexity)

Assignment 2: **Sorting Algorithms - I**

Implementation of sorting algorithms: Bubble Sort, Insertion Sort, Selection Sort

Assignment 3: Sorting Algorithms - II

Implementation of sorting algorithms: Quick Sort, Merge Sort, Counting Sort

Assignment 4: Singly Linked List

1. Dynamic implementation of Singly Linked List to perform following operations: Create, Insert, Delete, Display, Search, Reverse

2. Create a list in the sorted order.

Assignment 5: Doubly Linked List

1. Dynamic implementation of Doubly circular Linked List to perform following operations: Create, Insert, Delete, Display, Search

Assignment 6: Linked List Applications

1. Merge two sorted lists.

Addition of two polynomials in a single variable.

Assignment 7: Stack

1. Static and Dynamic implementation of Stack to perform following operations: Init, Push, Pop, Peek, Isempty, Isfull

Assignment 8: Applications of Stack

1. Implementation of an algorithm that reverses string of characters using stack and checks whether a string is a palindrome.

- 2. Infix to Postfix conversion.
- 3. Evaluation of postfix expression.

Assignment 9: Linear Queue

1. Static and Dynamic implementation of linear Queue to perform following operations: Init, enqueue, dequeue Peek, IsEmpty, IsFull.

Assignment 10: Circular and Priority Queue

- 1. Implementation of circular queue
- 2. Implementation of priority queue

Suggested Assignments for Software Engineering mini Project	3
---	---

- 1. Prepare detailed statement of problem for the selected mini project
- 2. Identify suitable process model for the same.
- 3. Develop Software Requirement Specification for the project.
- 4. Identify scenarios and develop UML Use case
- 5. Other artifacts: Class Diagram, activity diagram, sequence diagram, component diagram and any other diagrams as applicable to the project.

Sample project titles: (These are just samples, students are suggested to take up different case studies)

- 1. Online mobile recharge system
- 2. Credit calculation system
- 3. Image sharing and editing system
- 4. Internal examination system
- 5. e-learning management system

Sa Sitte - DATA	vitribai Phule Pune University S.Y.B.Sc. (Computer Science) Computer Science Paper - I Course Code: CS 241	PITHMS II	
	STRUCTURES AND ALGO	(1111)	
Teaching Scheme	No. of Credits	Examination	n Scheme
3 Lectures / week (50 mins.	02	IE : 15 1	marks
duration)		UE: 35 1	marks
Prerequisites :			
Knowledge of C Progra	amming Language		
 Basic knowledge of alg Basic knowledge of lin 	gorithms		
Basic knowledge of fin Course Objectives	ear data structures		
• To learn the systematic	way of solving problems		
 To design algorithms 	way of solving proclems		
• To understand the diffe	erent methods of organizing large	amount of data	
• To efficiently impleme	nt the non-linear data structures		
Course Outcomes: On complete	ion of this course students will b	e able to	
Implementation of diffe	erent data structures efficiently		
Usage of well-organize	d data structures to handle large	amount of data	
Usage of appropriate data	ata structures for problem solving	3	
Course Contents			
Chapter 1 Tree			10 lectures
1.1 Concept and Terminologie	S		
1.2 Types of Binary trees - Bin	lary tree, skewed tree, strictly bit	lary tree, full bir	hary tree,
1.3 Representation – Static and	Dynamic		
1.4 Implementation and Opera	tions on Binary Search Tree - Cr	eate, Insert, Del	ete, Search,
Tree traversals- preorder, inor	der, postorder (recursive implen	nentation), Level	l-order
traversal using queue, Countin	g leaf, non-leaf and total nodes,	Copy, Mirror.	
1.5 Applications of trees			
1.5.1 Heap sort, implement	ntation	malamantation	using
priority queue)	uy strategy, Hurrinan encoding (Implementation	using
Chapter 2 Efficient Sea	rch Trees		8 lectures
2.1 Terminology: Balanced tre	es - AVL Trees, Red Black tree,	splay tree, Lexie	cal search
tree - Trie			
2.2 AVL Tree- concept and rot	ations		
2.4 Multi-way search tree - B	and B_{\pm} tree - Insertion. Deletion	ı	
		-	
Chapter 3 Graph			12 lectures
3.1 Concept and terminologie	S		
3.2 Graph Representation –Ad	jacency matrix, Adjacency list, I	nverse Adjacenc	ey list,
Aujacency multilist 3.3 Graph Traversals – Rreadtl	h First Search and Denth First Se	arch (with impl	ementation)
3.4 Applications of graph	i i not souron und Doptii i not so	aron (with hip)	incination)

6 lectures

3.4.1 Topological sorting

3.4.2 Use of Greedy Strategy in Minimal Spanning Trees (Prims and Kruskals algorithm)

3.4.3 Single source shortest path - Dijkstra's algorithm

3.4.4 Dynamic programming strategy, All pairs shortest path - Floyd Warshall algorithm

3.4.5 Use of graphs in social networks

Chapter 4 Hash Table

4.1 Concept of hashing

4.2 Terminologies – Hash table, Hash function, Bucket, Hash address, collision, synonym, overflow etc.

4.3 Properties of good hash function

- 4.4 Hash functions : division function, MID square , folding methods
- 4.5 Collision resolution techniques
 - 4.5.1 Open Addressing Linear probing, quadratic probing, rehashing

4.5.2 Chaining - Coalesced, separate chaining

Reference Books:

- 1. Fundamentals of Data Structures in C- Ellis Horowitz, SartajSahni,Susan Anderson-Freed, 2nd Edition, Universities Press.
- Data Structures using C and C++-YedidyahLangsam, Moshe J. Augenstein, Aaron M. Tenenbaum, Pearson Education
- 3. Data Structures: A Pseudo code approach with C, Richard Gilberg ,Behrouz A. Forouzan, Cengage Learning.
- 4. Introduction to Data Structures in C-Ashok Kamthane, Pearson Education
- 5. Algorithms and Data Structures, Niklaus Wirth, Pearson Education
- 6. Introduction to Algorithms—Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein--MIT Press
- 7. Fundamentals of Computer Algorithms-- Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, Universities Press
- 8. The Algorithm Design Manual Steven S Skiena, Springer

Cours	Savitribai Phule Pune Univ S.Y.B.Sc. (Computer Scien Computer Science Paper - I Se e Code: CS 242 Title : Compu	ersity nce) emester II nter Networks-I
Teaching Scheme 3 lectures / week (50 min duration)	s. No. of Credits 02	Examination Scheme IE : 15 marks UE: 35 marks
Prerequisites Principles of Digital Elect Communication Principle	ronics s	
Course Objectives To prepare students with standards, various topolog	basic networking concepts: data c gies and applications of network.	communication, protocolsand
 Course Outcomes 1. Have a good under particular have a g 2. Understand the work 3. Analyze the require appropriate network 	rstanding of the OSI and TCP/IP ood knowledge of Layers. orking of various protocols. rements for a given organizationa rking architecture and technologi	Reference Models and in Il structure and select the most es
Course Contents		
Chapter 1 Introducti	on to Networks and Network N	Addels 4 lectures
 1.1 Data communication, 1.2 Networks, network cr Accessing the Interne 1.3 Network Software- Pr and Connectionless S 1.4 Reference models - C devices in different la 	components, data representation iteria, network types - LAN, WA t rotocol hierarchies, Design Issues ervices, SI Reference Models, TCP/IP Re yers, Comparison of OSI and TC	AN, Switching, The Internet, s of the layer, Connection Oriented eference model, Connection CP/IP Reference Models.
Chapter 2 Lower Lay	yers	10 lectures
 2.1 Communication at the rate), noisy channel (S bandwidth-delay prod 2.2 Design issues of Data congestion control, Li 2.3 Framing Methods - Cl Stuffing, Physical Lay 2.4 The Channel allocatio Taxonomy of multiple 2.5 Switching and TCP/IF switching 2.6 Wired LANs - Standa implementation Factor 	physical layer, data rate limits - hannon capacity), Performance - uct, jitter Link Layer, Services - Framing, nk layer addressing naracter Count, Flag bytes with E ver Coding Violations n problem, Static and dynamic al e-access protocols layers, Types - circuit switching rd Ethernet characteristics, Addre	Noiseless channel (Nyquist bit bandwidth, throughput, latency, flow control, error control, Byte Stuffing, Flags bits with Bit llocation, Media Access Methods - g, packet switching and message essing, Access method,

2.7 Wireless LANs - Architectural comparison, Characteristics, Access control, IEEE 802.11

architectu	re, Physical layer, MAC sublayer, Bluetooth architecture,	Layers	
Chapter 3	Network Layer	12 lectures	
3.1 Network	ayer services - Packetizing, Routing and forwarding, other	services	
3.2 Open and	closed loop congestion control		
3.3 IPv4 addr addressing	essing- Address space, classful addressing, Subnetting, Su g, Network address resolution (NAT)	pernetting, classless	
3.4 Forwardin	g of IP packets- based on destination address, based on la	pel	
3.5 Network l options	Layer Protocols- Internet Protocol (IP), IPv4 datagram form	nat, Fragmentation,	
3.6 Mobile IP	-addressing, agents, Three phases		
3.7 Next Gen	eration IP- IPv6 address representation, address space, add	ress types, IPv6	
protocol,	backet format, extension header, Difference between IPv4	and IPv6	
3.8 Routing -	General idea, Algorithms - Distance vector routing, link st	ate routing, path-	
vector rou	ting		
Chapter 4	Transport Layer	10 Lectures	
4.1 Transport layer Services- Process-to-process communication, Addressing, Encapsulation and decapsulation, Multiplexing and demultiplexing, Flow control, Pushing or pulling,			
Elevy cont	rol Duffere Sequence numbers Asknowledgements slid	Pushing or pulling,	
Flow cont	rol, Buffers, Sequence numbers, Acknowledgements, slidi	Pushing or pulling, ng window,	
Flow cont congestio	rol, Buffers, Sequence numbers, Acknowledgements, slidi a control nless and Connection-oriented service. Port numbers	Pushing or pulling, ng window,	
Flow cont congestion 4.2 Connection 4.3 Transport	rol, Buffers, Sequence numbers, Acknowledgements, slidi a control nless and Connection-oriented service, Port numbers layer protocols- User datagram protocol, user datagram, U	Pushing or pulling, ng window, IDP services	
Flow cont congestion 4.2 Connection 4.3 Transport 4.4 Transmiss	rol, Buffers, Sequence numbers, Acknowledgements, slidi n control nless and Connection-oriented service, Port numbers layer protocols- User datagram protocol, user datagram, U ion Control Protocol - TCP Services, TCP Features, TCP	Pushing or pulling, ng window, IDP services Segment format.	
Flow cont congestion 4.2 Connection 4.3 Transport 4.4 Transmiss three-way	rol, Buffers, Sequence numbers, Acknowledgements, slidi n control nless and Connection-oriented service, Port numbers layer protocols- User datagram protocol, user datagram, U ion Control Protocol - TCP Services, TCP Features, TCP handshake for connection establishment and termination,	Pushing or pulling, ng window, IDP services Segment format, State transition	
Flow cont congestion 4.2 Connection 4.3 Transport 4.4 Transmiss three-way diagram, v	rol, Buffers, Sequence numbers, Acknowledgements, slidi n control nless and Connection-oriented service, Port numbers layer protocols- User datagram protocol, user datagram, U ion Control Protocol - TCP Services, TCP Features, TCP handshake for connection establishment and termination, vindows in TCP.	Pushing or pulling, ng window, IDP services Segment format, State transition	
Flow cont congestion 4.2 Connection 4.3 Transport 4.4 Transmiss three-way diagram, v	rol, Buffers, Sequence numbers, Acknowledgements, slidi n control nless and Connection-oriented service, Port numbers layer protocols- User datagram protocol, user datagram, U ion Control Protocol - TCP Services, TCP Features, TCP handshake for connection establishment and termination, vindows in TCP.	Pushing or pulling, ng window, IDP services Segment format, State transition	
Flow cont congestion 4.2 Connection 4.3 Transport 4.4 Transmiss three-way diagram, w	rol, Buffers, Sequence numbers, Acknowledgements, slidi n control nless and Connection-oriented service, Port numbers layer protocols- User datagram protocol, user datagram, U ion Control Protocol - TCP Services, TCP Features, TCP handshake for connection establishment and termination, vindows in TCP.	Pushing or pulling, ng window, IDP services Segment format, State transition	
Flow cont congestion 4.2 Connection 4.3 Transport 4.4 Transmiss three-way diagram, w Reference Bo 1. Comp	rol, Buffers, Sequence numbers, Acknowledgements, slidi n control nless and Connection-oriented service, Port numbers layer protocols- User datagram protocol, user datagram, U ion Control Protocol - TCP Services, TCP Features, TCP handshake for connection establishment and termination, windows in TCP.	Pushing or pulling, ng window, IDP services Segment format, State transition	
Flow cont congestion 4.2 Connection 4.3 Transport 4.4 Transmiss three-way diagram, w Reference Bo 1. Comp 2. Data 0	rol, Buffers, Sequence numbers, Acknowledgements, slidi n control nless and Connection-oriented service, Port numbers layer protocols- User datagram protocol, user datagram, U ion Control Protocol - TCP Services, TCP Features, TCP handshake for connection establishment and termination, windows in TCP. oks: uter Networks-Andrew S. Tanenbaum, 5 th Edition, Pearson Communication and Networking- BehrouzFourouzan, 5 th E	Pushing or pulling, ng window, IDP services Segment format, State transition	

Savitribai Phule Pune University S.Y.B.Sc. (Computer Science) Computer Science Paper - III Course Code: CS 243 Title : Practical course on CS 241(Data Structures and Algorithms II) and CS 242 (Computer Networks I)

Teaching Scheme	No. of Credits	Examination Scheme
4 hrs 20 mins / week	2	IE : 15 marks
Batch size : 12		UE: 35 marks

Lab Book:

The lab book is to be used as a hands-on resource, reference and record of assignment submission and completion by the student. The lab book contains the set of assignments which the student must complete as a part of this course.

Programming Assignments:

Programs should be done individually by the student in the respective login. The codes should be uploaded on either the local server, Moodle, Github or any open source LMS. Print-outs of the programs and output may be taken but not mandatory for assessment.

Assessment:

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments performance of student. Each lab assignment assessment will be assigned grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include-timely completion, performance, innovation, efficient codes and good programming practices.

• Internal Evaluation :

- \circ 10 marks will be given based on Networking assignments.
- o 5 marks will be allocated for Assignment completion and practical attendance
- University Evaluation :
 - $\circ~$ The Practical slip will be of 35 Marks which will be based on Advanced Data structures.

Operating Environment:

For Data Structures:

- **Operating system:** Linux
- Editor: Any linux based editor like vi, gedit etc.
- **Compiler** : cc or gcc

Course Contents :-

Assignment 1 Binary Search Tree and Traversals

- 1. Implement Binary Search Tree (BST) to perform following operations on BST– Create, Recursive Traversals - Inorder, Preorder, Postorder
- 2. Perform following operations: insert, delete

Assignment 2 Binary Search Tree Operations

- 1. Implement Binary Search Tree (BST) to perform following operations on BST–copy and mirror image of BST, counting leaf, non-leaf and total nodes.
- 2. Level-order traversal of binary search tree using queue.

Assignment 3 Applications of Binary Tree

- 1. Sort set of elements using Heap sort
- 2. Encode a set of characters using Huffman encoding

Assignment 4 Graph implementation

- 1. Implement Graph as adjacency matrix and adjacency list
- 2. Calculate indegree and outdegree of vertices
- 3. Graph traversals: BFS and DFS.

Assignment 5 Graph Applications - I

- 1. Implementation of Topological sorting
- 2. Implementation of Prims/Kruskals Minimum spanning tree algorithm

Assignment 6 Graph Applications - II

- 1. Implementation of Dijkstra's shortest path algorithm for finding Shortest Path from a given source vertex using adjacency cost matrix.
- 2. Implementation of Floyd Warshall algorithm for all pairs shortest path.

Assignment 7 Hash Table

- 1. Implementation of static hash table with Linear Probing.
- 2. Implementation of static hash table with chaining.

Assignment 8 Hash Table-2

1. Implementation of linked hash table with chaining.

Assignment 9 Networking Assignment

Assignment 10 Networking Assignment