SCHOOL OF ARCHITECTURE, SCIENCE AND TECHNOLOGY

 Yashwantrao Chavan Maharashtra Open UniversityV130: M. Sc. (Mathematics) \{2021 Pattern\}
(Syllabus for Semester 01 to 04)

2021

Email: director.ast@ycmou.ac.in Website: www.ycmou.ac.in Phone: +91-253-2231473

Programme Advisory Committee (PAC)

V130: M Sc (Mathematics) \{2021 Pattern\}	
SN	Members
01	Dr Sunanda More, The Director, School of Architecture, Science and Technology, Internal YCMOU Member (M: 940377 4750), Email: more_sa@ycmou.digitaluniversity.ac, sunandarun@yahoo.com
02	Dr. Manoj Killedar, Internal YCMOU Member (M: 940 377 4504), Email: killedar_ms@ycmou.digitaluniversity.ac, manoj.killedar@live.com
03	Dr. Chetana Kamlaskar, Internal YCMOU Member (M: 940 377 4531), Email: kamlaskar_ch@ycmou.digitaluniversity.ac, chetana.kamlaskar@gmail.com
Five External Members from Academic from other Statutory University/ Private College/Autonomous College	
04	Prof. Dr T M Karade, Ex prof., RTM Nagpur University (M:+919822468011), Email: tmkarade@gmail.com
05	Prof. Dr Shivdas D Katore, Prof., Sant Gadge Baba, Amravati University (M: 090110 70695), Email: katoresd@rediffmail.com
06	Prof. Dr J N Salunke, Prof., SRTM University, Nanded (M: 94203 89908), Email: drjnsalunke@gmail.com
07	Prof. Dr Meenakshi P Wasadikar, Prof. HOD, Dr Babasaheb Ambedkar Marathwada University (M: 77450 84648, 083299 38772), Email: wasadikar@yahoo.com
08	Prof. Dr S R Chaudhari, Prof. HOD, North Maharashtra University, Jalgaon (M:094201 29704), Email: drsrchaudhari@nmu.ac.in

Syllabus of all courses at Semester 01 and 02 were finalized in PAC meeting held on 31 Aug 2018

Syllabus of all courses at Semester 03 and 04 were finalized in PAC meeting held on 14 Sept 2019

(cc) EY-En

 This work by YCMOU is licensed under a Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License.* First eBook Publication : June 2021
* Publisher : Director, School of Architecture, Science and Technology, YCMOU, Nashik - 422 222, MH, India
* Free Download from Website at: http://www.ycmou.ac.in/ and http://ycmou.digitaluniversity.ac/
* Send Your Feedback about this syllabus to: director.ast@ycmou.ac.in

Contents

About the Programme7
Objectives and Scope of the Programme 7
Mode of Education 7
Basic Information 8
Eligibility and Fees 8
Programme Structure 8
Semesters and Courses 9
Grading System 10
Evaluation Pattern 11
Successful Completion of Course or Programme 11
Semester 01 12
S25011: Real Analysis 12
Programme Information 12
Course Information 12
Presumed Knowledge and Learning Objectives 12
Units 12
Detailed Syllabus 13
Learning Resource Details 13
S25012: Abstract Algebra 15
Programme Information 15
Course Information 15
Presumed Knowledge and Learning Objectives 15
Units 15
Detailed Syllabus 15
Learning Resource Details 16
S25013: Ordinary Differential Equations 17
Programme Information 17
Course Information 17
Presumed Knowledge and Learning Objectives 17
Units 17
Detailed Syllabus 18
Learning Resource Details 18
S25014: Topology 20
Programme Information 20
Course Information 20
Presumed Knowledge and Learning Objectives 20
Units 20
Detailed Syllabus 21
Learning Resource Details 21
S25015: Numerical Analysis 22
Programme Information 22
Course Information 22
Presumed Knowledge and Learning Objectives. 22
Units 22
Detailed Syllabus 23
Learning Resource Details 23
Semester 02 24
S25021: Measure and Integration Theory 24
Programme Information 24
Course Information 24
Presumed Knowledge and Learning Objectives 24
Units 24
Detailed Syllabus 25
Learning Resource Details 25
S25022: Linear Algebra 26
Programme Information 26
Course Information 26
Presumed Knowledge and Learning Objectives 26
Units 26
Detailed Syllabus 27
Learning Resource Details 27
S25023: Partial Differential Equations 28
Programme Information 28
Course Information 28
Presumed Knowledge and Learning Objectives. 28
Units 28
Detailed Syllabus 29
Learning Resource Details 29
S25024: Number Theory 31
Programme Information 31
Course Information 31
Presumed Knowledge and Learning Objectives 31
Units 31
Detailed Syllabus 31
Learning Resource Details 32
S25025: Integral Transforms 34
Programme Information 34
Course Information 34
Presumed Knowledge and Learning Objectives. 34
Units 34
Detailed Syllabus 35
Learning Resource Details 35
Semester 03 36
S25031: Complex Analysis 36
Programme Information 36
Course Information 36
Presumed Knowledge and Learning Objectives 36
Units 36
Detailed Syllabus 37
Learning Resource Details 37
S25032: Field Theory 38
Programme Information 38
Course Information 38
Presumed Knowledge and Learning Objectives 38
Units 38
Detailed Syllabus 39
Learning Resource Details 39
S25033: Integral Equations 41
Programme Information 41
Course Information 41
Presumed Knowledge and Learning Objectives 41
Units 41
Detailed Syllabus 42
Learning Resource Details 42
S25034: Discrete Mathematics 43
Programme Information 43
Course Information 43
Presumed Knowledge and Learning Objectives 43
Units 43
Detailed Syllabus 44
Learning Resource Details 44
S25035: Operations Research 46
Programme Information 46
Course Information 46
Presumed Knowledge and Learning Objectives. 46
Units 46
Detailed Syllabus 47
Learning Resource Details 47
Semester 04 48
S25041: Differential Geometry 48
Programme Information 48
Course Information 48
Presumed Knowledge and Learning Objectives. 48
Units 48
Detailed Syllabus 48
Learning Resource Details 49
S25042: Functional Analysis 51
Programme Information 51
Course Information 51
Presumed Knowledge and Learning Objectives. 51
Units 51
Detailed Syllabus 52
Learning Resource Details 52
S25043: Classical Mechanics 54
Programme Information 54
Course Information 54
Presumed Knowledge and Learning Objectives 54
Units 54
Detailed Syllabus 55
Learning Resource Details 55
S25044: Cryptography 57
Programme Information 57
Course Information 57
Presumed Knowledge and Learning Objectives. 57
Units 57
Detailed Syllabus 58
Learning Resource Details 58
S25045: Topics in Fuzzy Mathematics 60
Programme Information 60
Course Information 60
Presumed Knowledge and Learning Objectives. 60
Units 60
Detailed Syllabus 61
Learning Resource Details 61
End of Document. 63

V130: M Sc (Mathematics) \{2021 Pattern\}

About the Programme

Programme Code: V130

Programme Name: M.Sc (Mathematics)

This M Sc programme is uniquely designed to impart essential knowledge in all major areas of pure or applied mathematics. This programme offers an exciting opportunity for specialization in mathematics to model and solves different real-life problems. The course contents of total 04 semesters are a carefully selected blend of theory and practical which prepares students for specialist professional employment, research in academia, and industry for broader applications.

Objectives and Scope of the Programme

Objectives of the Programme:

This programme has the following broad objectives:

- To prepare the learners, understand and apply the basic as well as advanced principles of mathematics for solving problems from science with an emphasis on applications
- To produce the learners who are well-grounded in the fundamentals of Mathematics with the acquisition of the necessary skills, tools, and techniques required in many application areas
- To develop an ability to study the conceptual problem and critically analyze, and also promote the use of mathematics in industry and applied sciences
- To provide exposure and motivate students for research in current trends of mathematics

Scope of the Programme:

After successful completion of the M Sc programme, the learner has ample opportunities to use their mathematical knowledge in different areas:

- Career opportunities in government organizations like Defense Research and Development Organization (DRDO), Indian Space Research Organization (ISRO), research laboratories like Council of Scientific and Industrial Research or government-owned scientific organizations.
- Job positions like Mathematics Specialist, Quantitative Risk Analyst, Treasury Management Specialist, Public sector banking, Financial institutions, Engineering or Insurance Sectors, etc.
- Job opportunities in the teaching profession at science and engineering colleges, and Universities
- Scope for Higher Studies and find lucrative opportunities in the field of research.

Mode of Education

This Programme will be offered in Open and Distance Learning (ODL) Mode as defined in "UGC Open and Distance Learning Programmes and Online Programmes Regulations, 2020" published in the gazette notification by dated $4^{\text {th }}$ Sept 2020 by the UGC as specified below.
"Open and Distance Learning Mode means a mode of providing flexible learning opportunities by overcoming separation of teacher and learner using a variety of media, including print, electronic, online and occasional interactive face-to-face meetings with the learners or Learner Support Services to deliver teaching-learning experiences, including practical or work experiences"

BASIC Information

1. Mode of Education: ODL Mode.
2. Minimum Programme Duration: 2 years/ 4 semesters after B.Sc./B.A. or Equivalent pass with Maths
3. Total Courses and Credit Points: Total 5 Theory courses each of 4 credits at each semester. Total 20 courses of total 80 credit points at Semesters 01-04.
4. Required Study Efforts: Total 2400 Hours (including Self-Study) during all 4 semesters. 600 Hours (including Self-Study) during each semester.
5. Medium of Instruction: The programme is available only in English
6. Profile of Prospective Students: In-Service Science Teachers from Schools/ Junior College and Equivalent pass students
7. Attendance: Minimum 75 \% attendance recommended for all Theory type of courses.
8. Total programme Fee: Total ₹ $\mathbf{2 4 , 0 0 0}$ for all 04 Semesters
9. Equivalence Status: UGC and DEB recognized and approved [AY 2020-2021 and onwards] with UGC/DEB letter F.No. 1-2/2021 (DEB-I), Dated: 02.08.2021, available at https://www.ugc.ac.in/pdfnews/4204139_HEI-Recognition-list-02-08-2021.pdf

Eligibility and Fees

Admission Eligibility	Certification Eligibility	Fees and Deposit per year UF is payable to university along with admission form at the start of each year.	
Any BSc withMaths uptoSecond year/ BAwith Maths/ BE/BTech orequivalent pass	Min 40\% or better marks in total 20 courses (subjects) of total 80 credit points at Semesters 01-04.	Desc	INR ₹
		University Fee (UF)	6,000
		Study Center Fee (SCF)	6,000
		Additional Services Fee (ASF)	NA
	Aggregate performance and Class in the programme shall be reported on the basis of only semesters 03-04.	Total \sim	12,000
		Refundable LD (Payable only when student choose to avail Library Facility at the SC)	1,500

Programme Structure

$\begin{gathered} \text { Course }= \\ \text { Sem } \downarrow \end{gathered}$	$\begin{gathered} \text { Course 01, } \\ 4 \text { CR, T } \end{gathered}$	$\begin{gathered} \text { Course 02, } \\ 4 \mathrm{CR}, \mathrm{~T} \end{gathered}$	$\begin{gathered} \text { Course 03, } \\ 4 \text { CR, } T \end{gathered}$	$\begin{gathered} \text { Course 04, } \\ 4 \text { CR, } T \end{gathered}$	$\begin{gathered} \text { Course 05, } \\ 4 \text { CR, T } \end{gathered}$
$\begin{gathered} \text { Sem } 01 \\ 20 C R \end{gathered}$	S25011: Real Analysis	S25012: Abstract Algebra	S25013: Ordinary Differential Equations	S25014: Topology	S25015: Numerical Analysis
$\begin{gathered} \text { Sem } 02 \\ 20 C R \end{gathered}$	S25021: Measure and Integration Theory	S25022: Linear Algebra	S25023: Partial Differential Equations	S25024: Number Theory	S25025: Integral Transforms
$\begin{gathered} \hline \text { Sem } 03 \\ 20 \mathrm{CR} \end{gathered}$	S25031: Complex Analysis	S25032: Field Theory	S25033: Integral Equations	S25034: Discrete Mathematics	S25035: Operations Research
Sem 04 20 CR	S25041: Differential Geometry	S25042: Functional Analysis	S25043: Classical Mechanics	S25044: Cryptography	S25045: Topics in Fuzzy Mathematics

Development Scheme:

- Minimum 24 Lectures for each course (01 -05) @ 2 Lectures / Week shall be developed
- Textbook in SLM format (eBook): eBook in SLM format for each course (Free Download from University website) at all semester 01 to semester 04

Teaching-Learning Scheme:

- Minimum 24 Lectures for each course (01-05) @ 2 Lectures / Week, during each semester.
- Minimum 12 Counselling Sessions each of 1 hr for each Theory Course shall be provided by the counsellors at the Study Center during each semester

Semesters and Courses

SN	Code	Name	CA	EE	TM	Type	CR	Grade Point
Semester 01: 20 CRs, Specializations of M.Sc.								
01	S25011	Real Analysis	20	80	100	T	4	4
02	S25012	Abstract Algebra	20	80	100	T	4	4
03	S25013	Ordinary Differential Equations	20	80	100	T	4	4
04	S25014	Topology	20	80	100	T	4	4
05	S25015	Numerical Analysis	20	80	100	T	4	4
Semester 02: 20 CRs, Specializations of M.Sc.								
06	S25021	Measure and Integration Theory	20	80	100	T	4	4
07	S25022	Linear Algebra	20	80	100	T	4	4
08	S25023	Partial Differential Equations	20	80	100	T	4	4
09	S25024	Number Theory	20	80	100	T	4	4
10	S25025	Integral Transforms	20	80	100	T	4	4
Semester 03: 20 CRs, Specializations of M.Sc.								
11	S25031	Complex Analysis	20	80	100	T	4	4
12	S25032	Field Theory	20	80	100	T	4	4
13	S25033	Integral Equations	20	80	100	T	4	4
14	S25034	Discrete Mathematics	20	80	100	T	4	4
15	S25035	Operations Research	20	80	100	T	4	4
Semester 04: 20 CRs, Specializations of M.Sc.								
16	S25041	Differential Geometry	20	80	100	T	4	4
17	S25042	Functional Analysis	20	80	100	T	4	4
18	S25043	Classical Mechanics	20	80	100	T	4	4
19	S25044	Cryptography	20	80	100	T	4	4
20	S25045	Topics in Fuzzy Mathematics	20	80	100	T	4	4

Grading System

1. "Absolute Grading": the marks are converted to grades based on pre-determined class intervals.
2. "Letter Grade": It is an index of the performance of students in a said programme. Grades are denoted by letters $\mathrm{O}, \mathrm{A}+\mathrm{A}, \mathrm{B}+, \mathrm{B}, \mathrm{C}, \mathrm{P}$ and F .
3. "Grade Point": It is a numerical weight allotted to each letter grade on a 10 -point scale. Grade Point shall be " 0 (Zero)" for Letter Grade "Ab" and "F". The marks scored by the examinee shall be converted into grade points by dividing the marks scored in the aggregate and dividing the resulting number by maximum marks, multiplying the result by ten, retaining the integer part (ignore the fractional part). Thus if a person has secured 56 marks out of 100 marks in aggregate for a course, we get $(56 / 100) \times 10$ which is 5.6 . Ignoring the fraction, we get 5 as the grade point.

Letter Grade	Grade Point	Class
O	10	Outstanding
A+	9	Excellent
A	8	Very Good
B+	7	Good
B	6	Above Average
C	5	Average
P	4	Pass
F	\mathbf{o}	Fail
Ab	\mathbf{o}	Absent

4. "Credit Point": It is the product of grade point and number of credits for a course.
5. "Semester Grade Point Average (SGPA)": It is a measure of performance of work done in a semester. It is ratio of total credit points secured by a student in various courses registered in a semester and the total course credits taken during that semester. It shall be expressed up to two decimal places.
6. "Cumulative Grade Point Average (CGPA)": It is a measure of overall cumulative performance of a student over all semesters. The CGPA is the ratio of total credit points secured by a student in various courses in all semesters and the sum of the total credits of all courses in all the semesters. It is expressed up to two decimal places.
7. "Transcript or Grade Card or Certificate": Based on the grades earned, a grade certificate shall be issued to all the registered students after every semester. The grade certificate will display the course details (code, title, number of credits, grade secured) along with SGPA of that semester and CGPA earned till that semester.

SN	Type of Course	Continuous Assessment	End Examination
1	Theory (T)	"Continuous Assessment (CA)" of total 20 marks and total 4 SAQs, each of 5 marks, 1 SAQ on each CR in a Single attempt only	"End Examination (EE)" of total 80 Marks and 16 "Short Answer Questions (SAQs)" each of 05 marks (4 out of 5 SAQs on each Credit), during 150 Minutes. (80\%)

1. Separate and independent passing @ 40\% in EE and (CAT+EE) shall be essential for Theory and Practical component of each course. "CA, EE and Total marks" shall be separately reported for each course in the transcript or mark-statement.
2. Only 1 attempt for EE for each course shall be allowed in each semester. Maximum 1 attempt, for CAT for each course, shall be allowed in each semester.
3. Only best of past performance shall be reported in transcript or mark statement.
4. Total student evaluation for
a. Each semester shall be for $\mathbf{5 0 0}$ marks.
b. Each year shall be for $\mathbf{1 0 0 0}$ marks
c. Each regular PG degree shall be for $\mathbf{2 0 0 0}$ marks.
5. Reporting Semesters for certification:

- Min 40% or better marks in total 20 courses (subjects) of total 80 credit points at Semesters 01-04.
- Semester 03 and 04 Only best of past performance shall be reported in the transcript or mark statement

Successful Completion of Course or Programme

1. "Successful Completion of the Course" means - either course is exempted or student gets minimum specified or better grade, either in end examination of that course or by credit transfer. A student obtaining grade " F " shall be considered failed and will be required to reappear in the examination. The student obtained minimum " P " (Pass) letter grade required for successful completion of the each course.
2. "Successful Completion of the Programme" means - all courses at all semesters are successfully completed and the student obtained "P" (Pass) letter grade for all courses at all semesters along with minimum specified SGPA and CGPA.

Semester 01

S25011: Real Analysis

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25011	Real Analysis	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete: - BSc/BA with Mathematics or equivalent from a recognized University/Board.	After successful completion of this course, student should be able to - Comprehend the aspect of Metric Space which forms foundation for topology - Understand thorough foundation of Riemann integration theory - Use convergence of sequence and series of functions to evaluate Riemann integration of functions

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Metric Spaces Open and Closed Sets Sequences in Metric Spaces Continuity	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Connected Metric Spaces Complete Metric Spaces Totally Bounded Subsets of Metric Spaces Compact Metric Spaces	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Riemann Integral Necessary and Sufficient Conditions for Riemann Inegrability Properties of Riemann Integrals Mean Value Theorems and Fundamental Theorems of Calculus	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Convergence and Uniform Convergence of Sequence of Functions Properties of functions preserved under uniform convergence Convergence and Uniform Convergence of Series of Functions Power series	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR

Metric Spaces: Definition and examples of Metric spaces, Standard Metrics on \mathbb{R}^{n}, Discrete Metric Spaces, Open and Closed Balls
Open and Closed Sets: Definition and examples of open and closed sets, unions and intersections open and closed sets, structure of open sets in \mathbb{R}, open and closed sets in subspaces.

Sequences in Metric Spaces: Sequence and subsequence in Metric spaces, Convergence of sequence in metric spaces, Algebra of convergent sequences, Cauchy sequences and Bounded Sequences
Continuity: Sequential Definition of continuity, Theorems of connected sets. Continuity in terms of open and closed sets, homeomorphism between two metric spaces, uniform continuity, examples.

Connected Metric Spaces: Definition and examples of connected sets, equivalent characterization of connected sets, Connected subsets of \mathbb{R}, properties of continuous functions defined on connected metric spaces.
Complete Metric Spaces: Definition and examples of complete sets, characterization of complete sets using limit point, relation between closed and complete spaces, theorems on complete sets.
Totally Bounded Subsets of Metric Spaces: Definition and examples of connected sets, equivalent definitions of totally bounded sets, relation between bounded and totally bounded sets, totally bounded subsets of \mathbb{R}.
Compact Metric Spaces Definition and examples of compact sets, equivalent characterization of compact sets, theorems on compact sets, properties of continuous functions defined on compact metric spaces.

Riemann Integral: Concept of Lebesgue measure, sets of measure zero, lower and upper sum, defining Riemann Integral using upper and lower sums, numerical examples.
Necessary and Sufficient Conditions for Riemann Inegrability: Various theorems on Necessary and Sufficient Conditions for Riemann Inerrability, examples of Riemann and non-Riemann integrable functions.
Properties of Riemann Integrals: Algebra of Riemann integrable functions: addition, subtraction, scalar multiplication, absolute value etc., Inequalities on Riemann Integrals, Riemann integrals of non -negative functions, examples.
Mean Value Theorems and Fundamental Theorems of Calculus: Definition of derivative of real valued functions of real variable, Rolle's theorem, Lagrange's Mean Value Theorem, Cauchy's Mean Value Theorem, First and Second Fundamental Theorems of Calculus

Convergence and Uniform Convergence of Sequence of Functions: Pointwise convergence of sequence of
functions, Uniform convergence of sequence of functions, Difference between pointwise and uniform convergence, examples.
Properties of functions preserved under uniform convergence: Theorems on Continuity, Integrability and Differentiability of sequence of functions under uniform convergence, examples.
Convergence and Uniform Convergence of Series of Functions: Pointwise convergence of series of functions, Uniform convergence of sequence of functions, Properties of functions preserved under uniform convergence of series of functions, Weierstrass M-Test for Uniform Convergence of series of functions, examples.
Power series: Conditions for uniform convergence of power series, term by term differentiation and
4-4

Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!			
S25011 -RB1	Methods of Real Analysis Richard R. Goldberg	$2^{\text {nd }} \mathrm{ed}$ Reprint 2017	9788120417571 Oxford \& IBH Publishing Co. Pvt Ltd
S25011 -RB2	Principles of Mathematical Analysis, Rudin Walter	$\begin{gathered} 3^{\text {rd }} \\ 1976, \end{gathered}$	Mc Graw Hillinc.,USA
S25011 -RB3	Introduction to Real Analysis Bartle Robert G and Sherbert Donald R	2010	Wiley India Edition,
S25011 -RB4	Lectures on Advanced Real Analysis Karade T.M. and Salunke J N	2004	SonuNilu
S25011 -RB5	Real Analysis Royden H L	$\begin{aligned} & \text { 4th, } \\ & 1993 \end{aligned}$	Macmillan Co Inc, New York,
S25011 -RB6	Topology of Metric Spaces S Kumaresan	$\begin{gathered} 2^{\text {nd }} \\ 2011 \end{gathered}$	9788184870589 Narosa Publishing House
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25011-CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25011-WL1			

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik -422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25012	Abstract Algebra	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete: \bullet BSc/BA with Mathematics or equivalent from a recognized University/Board.	After successful completion of this course, student should be able to
- Built foundation of group and ring theory	
- Apply the concept of subgroup and normal	
subgroups to discuss the solvability of groups and	
thereby solvability of equations of any positive	
order	

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \\ & \hline \end{aligned}$	Direct product of groups Finitely generated abelian groups Normal Subgroups Homomorphisms of groups	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Series of Groups Solvable groups Group action on a set Sylow Theory	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Maximal and Prime ideals Ring of Polynomials Factorization of a polynomials over a field Factorization over Domains	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \\ & \hline \end{aligned}$	Unique factorization Domains Principal ideal domains Euclidean Domains Ring of Gaussian Integers	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR

Detailed Syllabus

UN	Detailed Syllabus of the Unit	CR
1-1	Direct product of groups: (Preliminaries on groups, subgroups and cyclic groups) External direct product, Internal direct product and join of subgroups.	
1-2	Finitely generated Abelian groups: Generators and torsion group, finitely generated groups, Fundamental theorem for finitely greeted Abelian groups, Applications of fundamental theorem, decomposition of	CR 01

S25013: Ordinary Differential Equations

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25013	Ordinary Differential Equations	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete:	After successful completion of this course, student should be able to

- BSc/BA with Mathematics or equivalent from a recognized University/Board.
- Understand various methods of solutions of differential equations of first and second order.
- Apply these methods to solve differential equations in physics and engineering fields
- Discuss approximation and existence \& uniqueness of solution of nth order differential equations to solve them using the techniques discussed thereby.

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Linear Equations with constant coefficients Dependence and independence of solutions Applications of Second Order Linear Equations The homogeneous equation of higher order:	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ \text { 01-20 } \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	The non-homogeneous equation of higher order Linear Equations with variable Coefficients Reduction of the order Homogeneous equations with analytic coefficients	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Linear Equations with Regular Singular Points Second order equations with regular singular points The Bessel equation Existence and Uniqueness of Solutions to First Order Equations	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	The method of successive approximations Non-local existence of solutions Existence and Uniqueness of Solutions to Systems and n-th Order Equations Complex n-dimensional space	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR

UN	Detailed Syllabus of the Unit	CR
1-1	Linear Equations with Constant Coefficients: Introduction, The second order homogeneous equation Initial value problems for second order equations, Uniqueness theorem	CR 01
1-2	Dependence and independence of solutions: Linear dependence and independence, A formula for the Wronskian, The non-homogeneous equation of order two.	
1-3	Applications of Second Order Linear Equations: Hooke's Law, Force acting upon the mass, Free, damped and undamped motion and Electric circuit problems	
1-4	The homogeneous equation of higher order: Initial value problems for $n^{\text {th }}$ order equations, Existence and uniqueness theorems, Equations with real constants	
2-1	The non-homogeneous equation of higher order: A special method for solving the non-homogeneous equation, Algebra of constant coefficient operators.	CR 02
2-2	Linear Equations with Variable Coefficients: Introduction, Initial value problems for the homogeneous equation, Existence and uniqueness theorems, Solutions of the homogeneous equation.	
2-3	Reduction of the order: The Wronskian and linear independence, Reduction of the order of a homogeneous equation, The non-homogeneous equation.	
2-4	Homogeneous equations with analytic coefficients: Existence theorem for homogeneous equations with analytic coefficients, The Legendre equation, Power series method and problems.	
3-1	Linear Equations with Regular Singular Points: Introduction, The Euler equation, Second order equations with regular singular points.	CR 03
3-2	Second order equations with regular singular points: The general ease, A convergence proof, The exceptional cases.	
3-3	The Bessel equation: The Bessel equation and their solutions of first and second kind, Regular singular points at infinity.	
3-4	Existence and Uniqueness of Solutions to First Order Equations: Introduction, Equations with variables separated, Exact equations.	
4-1	The method of successive approximations: The Lipschitz condition, Convergence of the successive approximations.	CR 04
4-2	Non-local existence of solutions: Approximations and uniqueness of solutions, Equations with complexvalued functions.	
4-3	Existence and Uniqueness of Solutions to Systems and n-th Order Equations: Introduction, An example central forces and planetary motion, Some special equations.	
4-4	Complex n-dimensional space: Systems as vector equations, Existence and uniqueness of solutions to systems, Local Existence, Nonlocal existence and approximation and uniqueness, Existence and uniqueness for linear systems: Equations of order n.	

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher

Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination

CW-S25013			
Text-Books			
S25013-T01		2009	PHI Learning Private Limited, New Delhi
Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!			
S25013-RB1	An Introduction to OrdinaryDifferentialEquations, Earl A.Coddington	$3^{\text {rd }}$, 2007	Wiley - India,
S25013-RB2	Differential equations, Ross Shepley L. (for UN: 1-3)	$3^{\text {rd }}$,	John Wiley and Sons,
S25013 -RB3	Ordinary differential equations,		

	Birkhoff Garrett and Rota Gian - Carlo	1978	Third edition,
S25013 -RB4	Lectures on ordinary differential equations Karade T M	1995	Unpublished,
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25013-WL1			

S25014: Topology
Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25014	Topology	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete:	After successful completion of this course, student should be able to

- BSc/BA with Mathematics or equivalent from a recognized University/Board.
- Understand the basic concepts of topology and base for the topology
- Discuss continuity of functions in topological spaces
- Apply countability axioms for discussion of compactness, connectedness and sequential continuity of functions.

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Topological spaces Basis and Subbasis for a topology Product and subspace topologies Limit points	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ \text { 01-20 } \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Continuous functions Quotient spaces Connected spaces Locally connected spaces	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ \text { 21-40 } \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Compact spaces Forms of compact spaces Countability axioms Lindelöf spaces	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Separation axioms Regular and normal spaces Urysohn lemma Compactification	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR

Detailed Syllabus

UN	Detailed Syllabus of the Unit	CR
1-1	Topological spaces: Definition and examples of topological space,	CR 01
	Basis and Subbasis for a topology: Basis for a topology, finer and coarser topological spaces, subbasis	
1-2	Product and subspace topologies: Order topology, Product topology on $X \times Y$, Subspace topology	
1-3	Limit points: closed sets and limit points, closure and Interior, Hausdörff spaces	
2-1	Continuous functions: Continuity of a function, Homeomorphism, Pasting lemma,	CR 02
2-2	Quotient spaces: Product topology, Metric topology, Quotient topology	
2-3	Connected spaces: separations, Connected sets, cartesian product of connected sets,	
2-4	Locally connected spaces: components and path components, locally connected sets.	
3-1	Compact spaces: Compact sets, Hausdörff spaces and Compact sets, continuity and connected sets, Finite intersection property.	CR 03
3-2	Forms of compact spaces: Limit point compact sets, sequentially compact sets, countably compact sets, locally compact sets.	
3.3	Countability axioms: First countable axiom, second countable axiom, dense sets.	
3.4	Lindelöf spaces: Separable space, Lindelöf space.	
4-1	Separation axioms: T_{0}, T_{1}, T_{2} spaces	CR 04
4-2	Regular and normal spaces: $T_{3}, T_{3 \frac{1}{2}}$ spaces, regular spaces and Normal spaces	
4-3	Urysohn lemma: Urysohn's lemma, Tiesz extension theorem.	
4-4	Compactification: Completely regular spaces, Stone-Cech compactification.	

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher

Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination

CW-S25014			
Text-Books			
S25014-T01			

Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!

S25014 -RB1	Topology: First course, J R Munkres	Prentice Hall Inc., New Jersey
S25014 -RB2	Theory and Problems of Set Theory and Related Topics, Lipshutz Seymour	Schaum Publishing Co. New York
S25014 -RB3	Foundations of General Topology, Pervin William J	Academic Press
S25014-RB4		
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!		
S25014 -CD1		
Web Links: Explore additional details and reinforce learning, with this optional learning resource!		
S25014-WL1		

S25015: Numerical Analysis

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem.	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25015	Numerical Analysis	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete: - BSC/BA with Mathematics or equivalent from a recognized University/Board.	After successful completion of this course, student should be able to - Find solutions of algebraic or transcendental equations using an appropriate numerical method - Solve linear systems of equations using an appropriate numerical method - Apply the techniques of numerical methods to solve ordinary differential equations.

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Errors in Numerical Calculations Solutions of algebraic and transcendental equations Newton Raphson method Interpolation	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Matrix Theory Systems of Linear Algebraic equations Direct methods Iteration methods	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ \text { 21-40 } \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Numerical solutions of ordinary differential equations Successive approximation Euler's method Runge-Kutta method	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Numerical Differentiation and integration Methods based on Finite Differences Composite Integration methods Interpolation and approximation	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR

Detailed Syllabus

UN	Detailed Syllabus of the Unit [ebook: updated on 1 Oct 2020]	CR
1-1	Errors in Numerical Calculations: Approximate numbers and significant digits, rounding off numbers, absolute, relative and percentage errors.	CR 01
1-2	Solutions of algebraic and transcendental equations: Introduction, Bisection method, Iteration method, method of false position.	
1-3	Newton Raphson method: Newton Raphson method, generalized Newton's method.	
1-4	Interpolation: Finite differences- forward differences, backward differences, Newton's forward difference formula, Newton's backward difference formula.	
2-1	Matrices: Basic Definitions, Inverse of a matrix, rank of a matrix.	CR 02
2-2	Systems of Linear Algebraic equations: Introduction, linear systems of Equations, consistency of linear systems of Equations.	
2-3	Solutions of Linear Systems: Direct methods-Matrix inversion methods, Gauss Elimination method, Gauss Jordan Elimination method, Triangularization method.	
2-4	Iterative methods: Jacobi iteration method, Gauss Seidal iteration method	
3-1	Numerical solutions of ordinary differential equations: Introduction, Initial Value Problem, Boundary value problem.	CR 03
3-2	Solutions: Single step methods, Solution by Taylor series	
3-3	Euler's method: Euler's method, modified Euler's method	
3-4	Runge-Kutta method: Runge-Kutta method, Picards method of successive approximation	
4-1	Numerical Differentiation and integration: Introduction, Numerical Differentiation, Numerical Integration, Methods based on interpolation	CR 04
4-2	Methods based on Finite Differences: Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule	
4-3	Composite Integration methods: Gauss quadrature methods, Gauss-Legendre Integration methods, GaussLegendre Formulas.	
4-4	Interpolation and approximation: Introduction, Langrange Finite difference operators, Hermite interpolation.	

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher

Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination

CW-S25015			
Text-Books			
S25015-T01			

Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!

S25015 -RB1	Introductory methods of Numerical Analysis, S. S. Sastry	4th	Prentice Hall
S25015 -RB2	Numerical methods for scientific and engineering computation. Jain, lyengar and Jain	4th Edition	New Age Publication, New Delhi
S25015 -RB3	Numerical method \& Analysis, J. I. buchaman and P. R. Turner		Prentice Hall
S25015 -RB4			
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25015 -CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25015-WL1			

Semester 02

S25021: Measure and Integration Theory

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25021	Measure and Integration Theory	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

\(\left.$$
\begin{array}{|l|l|}\hline \text { Presumed Knowledge } & \text { Learning Objectives } \\
\hline \begin{array}{l}\text { For successful completion of this course, student should } \\
\text { have successfully complete: }\end{array} & \begin{array}{l}\text { After successful completion of this course, student should } \\
\text { be able to }\end{array} \\
\text { - BSc/BA with Mathematics or equivalent from a } \\
\text { recognized University/Board. }\end{array}
$$ \quad \begin{array}{l}Develop fundamentals of measurable sets and

functions\end{array}\right\}\)| Apply the concept of measurability of function and |
| :--- |
| sets to solve integration of functions. |
| -Discuss L^{p} spaces in more general setting and use
 them to prove Riesz theorem. |

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Lebesgue Measure The σ-Algebra of Lebesgue Measurable Sets Approximate measurable sets Additivity of measurable sets	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Measurable Functions Algebra of measurable functions Sequential Pointwise Limits and Simple Approximation Littlewood's Three Principles	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ \text { 21-40 } \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Integration of Bounded Measurable Functions General Lebesgue Integration Countable Additivity and Continuity of Integration Lebesgue Integration Further Topics	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Differentiation and Integration Functions of Bounded Variations The L^{p} Spaces The Riesz Theorem	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR

Detailed Syllabus

UN	Detailed Syllabus of the Unit	CR
1-1	Lebesgue Measure: measure, Lebesgue Outer Measure, Measurable sets.	CR 01
1-2	The σ-Algebra of Lebesgue Measurable Sets: Union, intersection, complementation of measurable sets, countable union of measurable sets, measurability of intervals.	
1-3	Approximate measurable sets: Outer and Inner Approximation of Lebesgue Measurable Sets.	
1-4	Additivity of measurable sets: Countable Additivity, Continuity of measure, The Borel-Cantelli Lemma, Non-measurable sets, The Cantor Set and the Cantor-Lebesgue.	
2-1	Measurable Functions: Measurability of function, equivalent conditions for measurability.	CR 02
2-2	Algebra of measurable functions: Sums, Products, and Composition of measurable functions.	
2.3	Sequential Pointwise Limits and Simple Approximation: Theorems on sequential limits.	
2.4	Littlewood's Three Principles: Three principles, Egoroffs Theorem, and Lusin's Theorem.	
3-1	Integration of Bounded Measurable Functions: The Riemann Integral, The Lebesgue Integral of a Bounded Measurable Function over a Set of Finite Measure, Linearity and Monotonicity of Integration, The Bounded Convergence Theorem.	CR 03
3-2	General Lebesgue Integration: The Lebesgue Integral of a Measurable Nonnegative Function, The Monotone Convergence Theorem, The General Lebesgue Integral, The Lebesgue Dominated Convergence Theorem.	
3.3	Countable Additivity and Continuity of Integration: The Vitali Convergence theorem, uniformly integrable functions,	
3.4	Lebesgue Integration Further Topics: Uniform Integrability, General Vitali Convergence Theorem, Convergence in Measure, Characterizations of Riemann and Lebesgue Integrability, Lebesgue Theorem.	
4-1	Differentiation and Integration: Continuity of Monotone Functions, Differentiability of Monotone Functions: Lebesgue's Theorem	CR 04
4-2	Functions of Bounded Variations: Bounded and total variations, Jordan Decomposition, Continuous Functions	
4-3	The L^{p} Spaces: Normed Linear Spaces, The Inequalities of Young, Holder, and Minkowski's inequality.	
4-4	Riesz Theorem: Banach Space, Riesz-Fisher theorem, Approximation and Separability, The Riesz Representation Theorem.	

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher
Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination			
CW-S25021			
Text-Books			
S25021-T01			
Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!			
S25021 -RB1	Real Analysis, H. L. Royden and P. M. Fitzpatrick	$\begin{gathered} 4^{\text {th }}, \\ 2010 \end{gathered}$	Pearson Education Asia China Machine press.
S25021 -RB2	Real Analysis, H. L. Royden	$\begin{aligned} & 2^{\text {nd }}, \\ & 1968 \end{aligned}$	The MacMillan Company New York
S25021 -RB3	Lebesgue Measure and Integration, P.K. Jain and V. P. Gupta	1986	John Willey and Sons, New York
S25021-RB4			
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25021-CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25021-WL1			

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25022	Linear Algebra	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete: - BSC/BA with Mathematics or equivalent from a recognized University/Board.	After successful completion of this course, student should be able to - Develop concepts of vector spaces and modules - Solve problems based on Linear transformations and Characteristic roots - Construct matrices in Nilpotent, Jordan and Rational forms which are useful for solving system of equations - Discuss adjoint, self-adjoint and normal linear trans formations

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Vector Spaces Dual spaces Inner product spaces Modules	$\begin{aligned} & \text { CR } 01 \\ & \text { MLs } \\ & 01-20 \end{aligned}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & \hline 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Linear transformations Characteristic roots Matrices Triangular forms	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Nilpotent forms Jordan form Rational Canonical form Trace and transpose of a matrix	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & \hline 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Determinants Operators Normal operator Real Quadratic forms	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR

Detailed Syllabus

UN	Detailed Syllabus of the Unit	CR
1-1	Vector Spaces: (Preliminaries on vector spaces, Linear independence and base)Direct product of subspaces, Homomorphism, Isomorphism theorems,	CR 01
1-2	Dual Spaces: Theorems related to Hom(V, W), Dual space of a vector space, Annihilator.	
1-3	Inner product spaces: Inner product, Gram-Schmidt normalization process	
1-4	Modules: Submodules, fundamental theorem of finitely generated modules over Euclidean rings, homomorphisms, irreducible modules.	
2-1	Linear transformations: Algebra of Linear transformations, Minimal polynomial of a Linear Transformation, Invertible Linear transformation. Rank of linear transformation.	CR 02
2-2	Characteristic roots: Idempotent, nilpotent linear transformations, characteristic roots.	
2-3	Matrices: Matrix of a Linear Transformation, Relation between algebras of $n \times n$ matrices and set of matrices related to linear transformations.	
2-4	Triangular form: Triangular form of a linear transformation, invariant subspaces, Theorems on triangular form.	
3-1	Nilpotent forms: Theorems related nilpotent linear transformation, Invariants of a linear transformation, cyclic subspace under Linear transformation,	CR 03
3-2	Jordan form: Jordan block, Jordan form diagonalizable matrix.	
3-3	Rational Canonical form: Companion matrix of a polynomial, rational canonical form of a linear transformation, elementary divisors of a linear transformation.	
3-4	Trace and transpose of a matrix: trace, transpose, symmetric matrix, skew symmetric matrix, adjoint.	
4-1	Determinants: Determinants of a matrix, properties of determinant, characteristic polynomials and roots.	CR 04
4-2	Operators: Hermitian, Unitary transformations and their properties. Operators and Their Matrices.	
4-3	Normal operator: Adjoint and normal operator. Properties of Normal operator, Its relationship with unitary and Hermite transformation, Orthogonal Projections and the Spectral Theorem.	
4-4	Real Quadratic forms: Bilinear and Quadratic Forms.	

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher
Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination			
CW-S25022			
Text-Books			
S25022-T01			
Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!			
S25022-RB1	Topics in Algebra, Herstein I N	1975	Wiley Eastern Ltd. New Delhi,
S25022 -RB2			
S25022-RB3			
S25022-RB4			
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25022-CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25022-WL1			

S25023: Partial Differential Equations

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

COURSE Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25023	Partial Differential Equations	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course,	After successful completion of this course, student should be able to
student should have successfully complete:	$\bullet \quad$Understand concepts, method of Solutions and applications of
•BSc/BA with Mathematics or equivalent from a recognized University/Board.	Partial Differential equations.
Improve problem solving and logical thinking abilities related to solution of partial differential equations	
Use the concepts of Differential equations to solve wave and diffusion equations	

UNITS

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Ordinary Differential Equations Orthogonal Trajectories Partial Differential Equations of the First Order Cauchy's Problem for First -order Equations	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Nonlinear Partial Differential Equations of the First Order Jacobi's Method Partial differential equations of the second order Linear Partial Differential Equations with Constant Coefficients	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Equations with Variable Coefficients Nonlinear equations of the second order Laplace's Equation Separation of Variables	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	The Wave Equation Methods of Solution for Wave Equations The Diffusion Equation Methods of Solution for Diffusion Equation	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR

Detailed Syllabus

UN	Detailed Syllabus of the Unit (Application Oriented problems)	CR
1-1	Ordinary Differential Equations: Surfaces and Curves in Three Dimensions, Simultaneous Differential Equations of the First Order and the First Degree in Three Variables, Methods of Solution of $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$.	CR 01
1-2	Orthogonal Trajectories: Orthogonal Trajectories of a System of Curves on a Surface, Pfaffian Differential Forms and Equations, Solution of Pfaffian Differential Equations in Three Variables.	
1-3	Partial Differential Equations of the First Order: PDEs, Origins of First -order Partial Differential Equations, Linear Equations of the First Order.	
1-4	Cauchy's Problem for First -order Equations: Integral Surfaces Passing through a Given Curve, Surfaces Orthogonal to a Given System of Surfaces.	
2-1	Nonlinear Partial Differential Equations of the First Order: Cauchy's Method of Characteristics, Compatible Systems of First-order Equations, Charpit's Method, Special Types of First-order Equations, Solutions Satisfying Given Conditions.	CR 02
2-2	Jacobi's Method: Jacobi's Method for Nonlinear Partial Differential Equations of the First Order, Applications of First -order Equations.	
2-3	Partial differential equations of the second order: The Origin of Second-order Equations, Second -order Equations in Physics, Higher -order Equations in Physics.	
2-4	Linear Partial Differential Equations with Constant Coefficients: Theorems on Equations with Constant Coefficients.	
3-1	Equations with Variable Coefficients: Reduction to various canonical forms, Characteristic Curves of Second -order Equations, Separation of Variables	CR 03
3-2	Nonlinear equations of the second order: Introduction, Monge's Method for Nonlinear equations of the second order.	
3-3	Laplace's Equation: The Occurrence of Laplace's Equation in Physics, Elementary Solutions of Laplace's Equation, Families of Equipotential Surfaces.	
3-4	Separation of Variables: Boundary Value Problems, Separation of Variables.	
4-1	The Wave Equation: The Occurrence of the Wave Equation in Physics, Elementary Solutions of the One dimensional Wave Equation.	CR 04
4-2	Methods of Solution for Wave Equations: The Riemann- Volterra Solution of the One -dimensional Wave Equation, Vibrating Membranes, Application of the Calculus of Variations, Three -dimensional Problems, General Solutions of the Wave Equation.	
4-3	The Diffusion Equation: The occurrence of the diffusion equation in physics, The Resolution of Boundary Value Problems for the Diffusion Equation.	
4-4	Methods of Solution for Diffusion Equation: Elementary solutions of the diffusion equation, Separation of variables.	

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher
Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination			
CW-S25023			
Text-Books			
S25023-T01			
Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!			
S25023 -RB1	Elements of PartialDifferentialEquations, Ian N. Sneddon	1957	McGraw-Hill International Edition, New Delhi
S25023 -RB2	An Elementary Course in PartialDifferentialEquations, T. Amaranath	$\begin{aligned} & 2^{\text {nd }} \\ & 2003 \end{aligned}$	Narosa Publishing House Pvt. Ltd, New Delhi

S25023 -RB3			
S25023 -RB4			
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25023-CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25023-WL1			

S25024: Number Theory

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25024	Number Theory	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete: - BSc/BA with Mathematics or equivalent from a recognized University/Board.	After successful completion of this course, student should be able to - Understand the concept of arithmetical functions - Solve problems based on congruences and quadratic residues - know the concepts of primitive root theory

UNITS

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	The Fundamental Theorem of Arithmetic The Euclidean Algorithm Arithmetic Functions μ and ϕ Arithmetic Functions and Dirichlet Product	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{array}{\|c\|} \hline 02-01 \\ 02-02 \\ 02-03 \\ 02-04 \end{array}$	Arithmetic Functions λ and σ_{α} Formal power series Congruences Polynomial Congruences	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	The Chinese Remainder Theorem Diophantine Equations Quadratic Residues Quadratic Reciprocity law	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \\ & \hline \end{aligned}$	Jacobi Symbol Primitive roots Existence of Primitive Roots Indices	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR

Detailed Syllabus

UN	Detailed Syllabus of the Unit [eBook- updated on 1 Oct 2020]	CR
1-1	The Fundamental Theorem of Arithmetic: Divisibility, Greatest common divisor, Prime numbers, The fundamental theorem of arithmetic.	CR 01
1-2	The Euclidean Algorithm: The series of reciprocals of the primes, The Euclidean algorithm, The greatest common divisor of more than two numbers.	
1-3	Arithmetic Functions $\boldsymbol{\mu}$ and $\boldsymbol{\phi}$: The Mobius function $\mu(n)$, The Euler totient function $\phi(n)$, A relation connecting $\mu(n)$ and $\phi(n)$, A product formula for $\phi(n)$.	
1-4	Arithmetic Functions and Dirichlet Product: The Dirichlet product of arithmetical functions, Dirichlet	
$\begin{aligned} & \text { V130 } \\ & 31 \end{aligned}$: M Sc (Mathematics) \{2021 Pattern\} 2021-2022	Page

	inverses and the Mobius inversion formula, The Mangoldt function $\Lambda(n)$, Multiplicative functions, Multiplicative functions and Dirichlet multiplication, The inverse of a completely multiplicative function.	
2-1	Arithmetic Functions λ and σ_{α} : Liouville's function $\lambda(n)$, The divisor functions $\sigma_{\alpha}(n)$, Generalized convolutions.	CR 02
2-2	Formal power series: The Bell series of an arithmetical function, Bell series and Dirichlet multiplication, Derivatives of arithmetical functions, The Selberg identity.	
2-3	Congruences: Definition and basic properties of congruences, Residue classes and complete residue systems, Linear congruences.	
2-4	Polynomial Congruences: Reduced residue systems and the Euler-Fermat theorem, Polynomial congruences module p. Lagrange's theorem, Applications of Lagrange's theorem.	
3-1	The Chinese remainder theorem: Simultaneous linear congruences, Applications of the Chinese remainder theorem, Polynomial congruences with prime power moduli.	CR 03
3-2	Diophantine Equations: Diophantine equations, Finite continued fractions, Solutions of Diophantine equations by using finite simple continued fractions.	
3-3	Quadratic Residues: Quadratic residues, Legendre's symbol and its properties, Evaluation of ($-1 / p$) and (2/p),	
3-4	Quadratic Reciprocity law: Gauss' lemma, The quadratic reciprocity law, Applications of the reciprocity law.	
4-1	Jacobi Symbol: The Jacobi symbol, Applications to Diophantine equations.	CR 04
4-2	Primitive roots: The exponent of a number $\bmod m$. Primitive roots and reduced residue systems, The nonexistence of primitive roots $\bmod 2^{\alpha}$ for $\alpha \geq 3$, The existence of primitive roots $\bmod p$ for odd primes p.	
4-3	Existence of Primitive Roots: Primitive roots and quadratic residues, The existence of primitive roots p^{α}, The existence of primitive roots $\bmod 2 p^{\alpha}$, The nonexistence of primitive roots in the remaining cases, The number of primitive roots $\bmod m$.	
4-4	Indices: The index calculus	

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher

Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination

CW-S25024			
Text-Books			
S25024-T01			
Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!			
S25024 -RB1	Introduction to Analytic Number Theory, Tom M. Apostol	1976	Springer-Verlag NY Heidelberg Berlin
S25024 -RB2	Elementary Number Theory, Burton D M	$\begin{gathered} 2^{\text {nd }}, \\ 2003 \end{gathered}$	Universal Book Stall, New Delhi
S25024 -RB3	Elementary Theory of Numbers, Hsiung C Y,	1992	Allied Publishers Ltd
S25024 -RB4	Elementary Number Theory, Jones Gareth A and Jones J Mary	2005	Springer,
S25024 -RB5	Elementary Number Theory, Karade T M, J N Salunke and Bendre M S,	2018	Sonu-Nilu
S25024 -RB6	Elementary Number theory with Applications, Koshy Thomas,	2002	Academic Press
S25024 -RB7	An Introduction to the Theory of Numbers, Niven I, Zuckerman H S and Montgomery H L	$\begin{gathered} 5^{\text {th }}, \\ 2004 \end{gathered}$	Wiley Student Edition

S25024 -RB8	Elementary Number Theory and its Applications, Rosen K H	1986	Addison-Wesley
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25024 -CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25024-WL1			

S25025: INTEGRAL TRANSFORMS

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik -422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25025	Integral Transforms	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete: \bulletBSC/BA with Mathematics or equivalent from a recognized University/Board.After successful completion of this course, student should be able to $\bullet \quad$Develop adequate knowledge of fundamentals of Fourier Integrals, Fourier Transforms, Inverse Fourier Transforms Solve problems on differential and integral equations using Laplace, Fourier and Z transforms techniques Solve problems based on Mellin Transform and Hankel transform techniques	

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Fourier Integrals Fourier Transforms Inverse Fourier Transforms Applications of Fourier Transforms	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & \hline 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Laplace Transform Properties of Laplace Transform The inverse Laplace Transform Applications of Laplace Transform	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ \text { 21-40 } \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	The Mellin Transform Inverse Mellin Transform Applications of Mellin transform The Henkel Transform	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Applications of Hankel transform Finite transforms Z- Transforms Inverse Z-transform	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR

Detailed Syllabus

Semester 03

S25031: Complex Analysis

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25031	Complex Analysis	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete: - BSc/BA with Mathematics or equivalent from a recognized University/Board.	After successful completion of this course, student should be able to - Develop the concepts of analytic functions, harmonic functions and the importance of the Cauchy Riemann equations. - Apply analyticity solve integration of functions - Describe the basic properties of singularities, zeros residues, poles to solve integrals. - Apply concept of Hadamard Theorem and Uniqueness of Direct Analytic Continuation along a Curve, Power Series Method of Analytic Continuation

Units

UN	Name of the Unit (Modified by PAC)	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Power Series Analytic Functions Harmonic Functions Mobius Transformations	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Power Series Representation of Analytic Functions Zeros of an Analytic Function The Index of a Closed Curve Morera's Theorem and Counting Zeros	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Goursat's Theorem Classification of Singularities Residues The Argument Principle	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Branches Hadamard Theorem Spaces Analytic Continuation	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR

Detailed Syllabus

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher
Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination			
CW-S25031			
Text-Books			
S25031-T01			
Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!			
S25031 -RB1	Functions of one Complex Variable, John B. Conway	2002	$81-85015-37-6$ Narosa Publishing House
S25031 -RB2	Complex Variables with Applications, Saminathan Ponnusamy, Herb Silverman	2006	$\begin{aligned} & \text { 10: 0-8176-4457-1 } \\ & \text { Birkhauser Boston } \end{aligned}$
S25031 -RB3	Complex Analysis, Theodore W. Gamelin	2003	$\begin{array}{\|l} \hline 978-0387950693 \\ \text { Springer } \\ \hline \end{array}$
S25031 -RB4	Complex Variables and Applications, R V Churchill and J W Brown	$8^{\text {th }} \mathrm{Ed}$	MC Graw Hill
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25031 -CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25031-WL1			

S25032: FIELD Theory

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik -422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25032	Field Theory	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

\(\left.$$
\begin{array}{|l|l|}\hline \text { Presumed Knowledge } & \text { Learning Objectives } \\
\hline \text { For successful completion of this course, student should } \\
\text { have successfully complete: } \\
\text { - BSc/BA with Mathematics or equivalent from a } \\
\text { recognized University/Board. }\end{array}
$$ \begin{array}{l}After successful completion of this course, student should

be able to

- Understand concepts in field theory such as finite

and algebraic extensions, algebraic elements,

constructible elements, solvable groups etc\end{array}\right\}\)| Aware the motive behind development of galois |
| :--- |
| theory and solvability by radicals |

UNITS

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \\ & \hline \end{aligned}$	Irreducible Polynomials Adjunction of Roots Algebraic Extensions Algebraically Closed Fields	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Splitting Fields Normal Extensions Finite Fields Separable Extensions	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Automorphism Groups Fixed Fields Fundamental Theorem of Galois Theory Different Galois Groups	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & \hline 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Cyclotomic Polynomials Cylic Extensions Polynomials Solvable by Radicals Ruler and Compass Constructions	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR

Detailed Syllabus

UN	Detailed Syllabus of the Unit	CR
1-1	Irreducible Polynomials: Definition and properties of irreducible polynomials, Gauss Lemma, Eisenstein criterion with examples.	CR 01
1-2	Adjunction of Roots: Field extension, dimension, finite extension, embedding of a field, theorems and examples	
1-3	Algebraic Extension: Algebraic element, minimal polynomial, algebraic but not finite extension, finitely generated extension and their properties.	
1-4	Algebraically Closed Fields: Definition and equivalent forms of algebraically closed field, algebraic closure, and existence of algebraically closed field.	
2-1	Splitting Fields: Definitions and examples of splitting fields, uniqueness of splitting fields, degree of the extension of the splitting field with solved examples.	CR 02
2-2	Normal Extensions: Splitting field of family of polynomials, definition and equivalent forms of normal extension, Examples of normal extension.	
2-3	Finite Fields: multiple roots, prime field, characteristic of a finite field, isomorphism of finite fields, existence of finite fields of power prime order.	
2-4	Separable Extensions: Separable polynomial, separable extension, perfect field, simple extension and their properties, transitivity of finite separable extensions.	
3-1	Automorphism Groups: Definition of group of automorphism with examples, Dedekind lemma.	CR 03
3-2	Fixed Fields: Definition and properties of fixed fields, relation between normal extension and fixed fields, some examples.	
3-3	Fundamental Theorem of Galois Theory: Galois group, Galois extension, fundamental theorem of Galois theory and its applications	
3-4	Different Galois Groups: Galois group of a polynomial with distinct roots, Galois group of a polynomial of order 2 and 3, Examples of polynomials whose Galois groups are octic group, group of symmetries of the triangle.	
4-1	Cyclotomic Polynomials: Roots of unity, Cyclotomic polynomials, Galois group of Cyclotomic polynomials.	CR 04
4-2	Cylic Extensions: Definition and examples of cyclic extensions, special case of Hilbert's problem 90, relation between finite cyclic extension and splitting field.	
4-3	Polynomials Solvable by Radicals: Radical extension, polynomial solvable by radicals and its properties, Examples of polynomials solvable by radicals.	
4-4	Ruler and Compass Constructions: Constructible points, lines and circles, properties of constructible numbers, classical problems : problem of squaring a circle, duplicating a cube, trisecting an angle, constructing of a regular n-gon.	

Learning Resource Details

LR CodeTitle Author	Edition Year	ISBN Publisher Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination CW-S25032 Text-Books S25032-T01 Reference-Books: Explore additional details and reinforce learning, with this optional learning resource! S25032 -RB1Basic Abstract Algebra, P.B. Bhattacharya, S.K. Jain, S.R. Nagpaul,	$2^{\text {nd }}$ Edition	Cambridge University Press
S25032 -RB2	Abstract Algebra, D.S. Dummit and R. M. Foote,	$2^{\text {nd }}$ Edition	John Wiley, 2002.	
S25032 -RB3	Galois Theory, Joseph Rotman	$2^{\text {nd }}$ Edition	Springer International Edition	

S25032 -RB4	Basic Algebra I, N. Jacobson	$\begin{aligned} & 2^{2^{\text {dd }}} \\ & \text { Edition } \end{aligned}$	Hindustan Publishing Co., 1984.
S25032 -RB5	Algebra I, S. Lang	$\begin{aligned} & 3^{\text {rd }} \text { Ed } \\ & 2005 \end{aligned}$	Addison Wesley,
S25032-RB6	Topics in Algebra, I N Herstein	$2^{\text {nd }} \mathrm{Ed}$	John Wiley
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25032-CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25032-WL1			

S25033: Integral Equations

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik -422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25033	Integral Equations	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should	After successful completion of this course, student should
have successfully complete:	be able to
- BSC/BA with Mathematics or equivalent from a recognized University/Board.	• Classify and solve integral equations

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Introduction Integral Equation with Separable Kernel Method of Successive Approximation Resolvent Kernel	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Application to Ordinary Differential Equations Dirac Delta function Green's function Modified Green's function	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Symmetric kernels Bilinear Forms Hilbert-Schmidt theorem Symmetric Integral Equation	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Singular Integral equations Integral Transforms Application of Laplace transform Application of Fourier transform	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR

Detailed Syllabus

UN	Detailed Syllabus of the Unit	CR
1-1	Introduction: Regularity Conditions, Special kinds of kernels, Eigen values and Eigen functions	CR 01
1-2	Integral equation with Separable Kernel: Convolution integral, Reduction to a system of algebraic equations, Fredholm alternative	
1-3	Method of Successive Approximation: An approximate method, Iterative scheme, Volterra integral equation	
1-4	Resolvent Kernel: Some results about the Resolvent kernel	
2-1	Application to Ordinary Differential Equations: Initial value problems, Boundary value problems	CR 02
2-2	Dirac Delta function: Adjoint equation of second order linear equation and self adjoint equation, Dirac delta function	
2-3	Green's Function: Green's function approach, Green's function for Nth-order ordinary differential equation	
2-4	Modified Green's Function: Modified Green's function	
3-1	Symmetric Kernels: Introduction, Fundamental properties of eigenvalues and Eigen functions for symmetric kernels	CR 03
3-2	Bilinear Forms: Expansion in Eigen functions and bilinear form	
3-3	Hilbert-Schmidt Theorem: Hilbert-Schmidt theorem and some immediate consequences	
3-4	Symmetric Integral Equation: Solution of a symmetric integral equation	
4-1	Singular Integral Equations: Abel's equations, Inversion formula for singular integral equations	CR 04
4-2	Integral Transforms: Laplace transform, properties, Fourier transform, Properties	
4-3	Application of Laplace Transform: Applications to Volterra integral and integro-differential equations with convolution type kernels	
4-4	Application of Fourier Transform: Solution by Fourier transform method	

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher
Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination			
CW-S25033			
Text-Books			
S25033-T01			
Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!			
S25033 -RB1	Linear Integral Equations R. P. Kanwal	1971	Academic Press
S25033 -RB2	Integral Equations, S. G. Mikhlin	1957	Pergamon Press
S25033 -RB3	A first Course in Integral Equations, A. M. Wazwaz	1997	World Scientific
S25033 -RB4	The Analysis of Linear Integral Equations, J. A. Cochran	1972	MC-Graw Hill
S25033 -RB5	Problems and Exercises in Integral Equations, M. A. Krasnow, Kislov and G. Hakaronke	1971	MIR Pub.
S25033 -RB6	Integral Equations: A short Course, Li, G Chambers	1976	International Textbook company
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25033 -CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25033-WL1			

S25034: Discrete Mathematics

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25034	Discrete Mathematics	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete: - BSc/BA with Mathematics or equivalent from a recognized University/Board.	After successful completion of this course, student should be able to - Solve problems on permutation and combinations - Comprehend concepts of graph theory, Trees, Cutsets - Elaborate properties of Boolean algebra, lattice and Boolean functions, Algebraic Systems defined by Lattices

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Permutations Combinations Generation of Permutations and Combinations Discrete Probability	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & \hline 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Graphs Paths and Circuits Eulerian and Hamiltonian Paths and Circuits Planar Graphs	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Trees Rooted and Binary Trees Spanning Trees Cut-Sets	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & \hline 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Boolean Algebras: Lattices and Algebraic Systems Basic Properties of Algebraic Systems Defined by Lattices Boolean Lattices and Boolean Algebras Boolean Functions and Boolean Expressions	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR

Detailed Syllabus

UN	Detailed Syllabus of the Unit \{ Exercises word should not be mentioned here as it is a part of each unit\}	CR
1-1	Permutations: Introduction, Definitions, Circular Permutations, Permutations with repetitions, Exercises.	CR 01
1-2	Combinations: Introduction, Definitions, Exercises.	
1-3	Generation of Permutations and Combinations: Introduction, Definitions, Permutations and Combinations with unlimited repetitions, Exercises.	
1-4	Discrete Probability: Sample space, Discrete Sample space, Simple and Compound event, Exercises.	
2-1	Graphs and Planar Graphs: Introduction to graph theory, types of graphs, Basic terminology, Subgraphs, Graph isomorphism, Connectedness in simple graphs, Matrix representation of graphs, Exercises.	CR 02
2-2	Paths and Circuits: Distance in graphs: Eccentricity, Radius, Diameter, Center, Weighted graphs Dijkstra's algorithm to find the shortest distance paths in graphs and digraphs, Exercises.	
2-3	Eulerian and Hamiltonian Graphs: Necessary and sufficient conditions for Euler circuits and paths in simple, undirected graphs. Some applications of graphs, Traveling Salesman's Problem, Nearest neighbor method, Exercises.	
2-4	Planar Graphs: Euler's formula. Kuratowski's theorem, Non planar graphs, Detection of Planarity, Geometric Dual, Coloring of graphs, Chromatic number, Chromatic polynomial, Exercises.	
3-1	Trees: Elementary properties of trees, Center, Pendant Vertices in a Tree, Distance and Centers in a Tree, Minimally connected graph, Exercises.	CR 03
3-2	Rooted and Binary Trees: Rooted trees, Binary trees, Trees as models. Properties of trees.	
3-3	Spanning Trees Minimum spanning trees: Minimum spanning trees. Fundamental Circuits, finding all Spanning Trees of a Graph, Spanning Trees in a Weighted Graph, Prim's and Kruskul's Algorithms, Exercises.	
3-4	Cut-Sets: Cut-vertex, Cut-Edge, Some Properties of a Cut-Set, Fundamental circuits and cut-sets, Connectivity and Separability, Exercises.	
4-1	Lattices and Algebraic Systems: Introduction, Principle of Duality, Properties of Lattices, Lattice as an Algebraic system, Sub Lattice, Bounded Lattice, Complements, Complete Lattice, Exercises.	CR 04
4-2	Basic Properties of Algebraic Systems Defined by Lattices: Distributive Lattice, Complemented Lattice, Isomorphic Lattice, Modular Lattice, Exercises.	
4-3	Boolean Lattices and Boolean Algebras: Properties of Boolean Algebra, Boolean sub-algebra, Homomorphism of Boolean Algebra, Order relation in Boolean Algebra, Exercises.	
4-4	Boolean Functions and Boolean Expressions: Fundamental forms of Boolean functions, Normal forms of Boolean functions, Disjunctive and Conjunctive normal form Examples, Exercises.	

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher
Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination			
CW-S25034			
Text-Books			
S25034-T01			
Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!			
S25034 -RB1	Elements of Discrete Mathematics, Liu, C L. (Chung Laung)	$\begin{aligned} & \hline 2^{\text {nd }} \\ & \text { Edition1985 } \end{aligned}$	0-07-038133-X
S25034 -RB2	Discrete mathematics with graph theory, Edgar G. Goodaire, Michael M. Parmenter	$\begin{aligned} & 2^{\text {nd }} \\ & \text { Edition2002 } \end{aligned}$	0-13-092000-2
S25034 -RB3	Discrete Mathematics and its Applications Kenneth H. Rosen	$7{ }^{\text {th }}$ Edition2012	978-0-07-338309-5
S25034 -RB4	Graph Theory, F. Harary	1969	Addition Wesley

S25034 -RB5	A First look at Graph Theory, John Clark and Derek Allan Holton	1991	$\begin{array}{\|l\|} \hline \text { Prentice Hall } \\ 81-7023-463-8 \end{array}$
S25034 -RB6	Graph Theory With Applications to Engineering and Computer Science, N. Deo	1974	Prentice Hall of India $0-13-363473-6$
S25034 -RB7	Boolean Algebra and Graph Theory J N Salunke	2000	Laxmi Prakashan
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25034 -CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25034-WL1			

S25035: Operations Research

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik -422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25035	Operations Research	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete:	After successful completion of this course, student should be able to

- BSc/BA with Mathematics or equivalent from a recognized University/Board.
- Understand the theory of convex sets, functions, formulation of LPP, techniques of integer and noninteger solution of Linear and nonlinear programming problems.
- Use quantitative methods and techniques for effective decisions- making
- Develop model formulation and applications that are used in solving business decision problems.

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Operations Research and its scope Linear Programming Problems Simplex Method Duality Theory and Dual Simplex Method	$\begin{aligned} & \text { CR } 01 \\ & \text { MLs } \\ & \text { 01-20 } \end{aligned}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on eachCR
$\begin{aligned} & \hline 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Game Models and Related Theory Two Person Zero Sum Game Dominance in Games Mixed Strategies($2 \times n$ and $m \times 2$ games)	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on eachCR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Network Analysis Fulkerson's Rule Critical Path Method (CPM) Programme Evaluation and Review Technique (PERT)	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on eachCR
$\begin{aligned} & 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Simulation Theory MONTE CARLO Method Generation of Random Numbers Simulation Languages	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on eachCR

Detailed Syllabus

UN	Detailed Syllabus of the Unit	CR
1-1	Operations Research and its Scope: Definition, Characteristics, Necessity of Operations Research in Industry, Scope of Operations Research.	CR 01
1-2	Linear Programming Problems: Formulation of LPP, Graphical Method of LPP solution.	
1-3	Simplex Method: Computational details of Simplex method, Artificial Starting Solution.	
1-4	Duality Theory and Dual Simplex Method: Definition, Formulation of Dual, Dual Simplex Algorithm.	
2-1	Game Models and Related Theory: Definition, Characteristics of Games, Types of Strategies.	CR 02
2-2	Two Person Zero Sum Game: Maximin and Minimax Principles, Saddle Point, Solution of game with and without saddle point.	
2-3	Dominance in Games: Rules for Dominance, Reduction of games by Dominance.	
2-4	Mixed Strategies($2 \times n$ and $m \times 2$ games): Algebraic method and Subgame method for solving $2 \times n$ and $m \times 2$ games	
3-1	Network Analysis: Definition, Symbols, Drawing Network diagrams, Analysis of Network diagrams.	CR 03
3-2	Fulkerson's Rule: Numbering the Events, Fulkersons Rule.	
3-3	Critical Path Method (CPM): Objects of CPM, Labelling Method, Critical Path Analysis.	
3-4	Programme Evaluation and Review Technique (PERT): Time Estimates, Frequency Distributions for PERT, PERT Technique.	
4-1	Simulation Theory: When to use Simulation, What is Simulation, Advantages and Limitations of Simulation, Applications of Simulation.	CR 04
4-2	MONTE CARLO Method: General procedure for MONTE CARLO Method, Advantages and Disadvantages of MONTE CARLO Method, Applications.	
4-3	Generation of Random Numbers: Methods of finding Random Numbers, Mixed Congruence Method, Multiplicative Congruential Method.	
4-4	Simulation Languages: Languages used for Simulation.	
	Transportation, Inventory, Sequencing and Assignment problems (To be added in this course content, flexibility given to author to maintain logical flow while adding them)	

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher
Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination			
CW-S25035			
Text-Books			
S25035-T01			
Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!			
S25035 -RB1	Operations Research, P. K. Gupta and D. S. Hira		S Chand and Company Limited, New Delhi.
S25035 -RB2	Operations Research An Introduction, Taha	9th Edition	Pearson
S25035 -RB3	Operations Research, B. S. Goel, S. K. Mittal,		Pragati Prakashan
S25035 -RB4	Linear Programming, G. Hardley,		Oxford and IBH Publishing Co
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25035 -CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25035-WL1			

Semester 04

S25041: Differential Geometry

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25041	Differential Geometry	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete: - BSc/BA with Mathematics or equivalent from a recognized University/Board.	After successful completion of this course, student should be able to - Describe curves and surfaces and label their equations - Represent the curves and surfaces in different forms and identify their nature - Construct various surfaces - Compute various parameters related to curves and surfaces and justify their behavior

Units

UN	Name of the Unit [Updated as per ebook on 2June 2021]	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Euclidean Space Curves Frenet Apparatus and Frenet Formulae Isometries of \mathbf{R}^{3}	$\begin{aligned} & \text { CR } 01 \\ & \text { MLs } \\ & 01-20 \end{aligned}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Covariant Derivative Surfaces in R^{3} Patch computation of a Surface Shape Operator	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Gaussian and Mean Curvatures Gauss Map Fundamental Forms Geodesic Curvature	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Some Special Curves on a Surface Geodesic Differential Equations Isometry of Surfaces Surfaces of Constant Curvature	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR

Detailed Syllabus

UN	Detailed Syllabus of the Unit	CR
1-1	Euclidean Space: Euclidean space of 3- dim., Tangent vectors and vector fields on R , Natural coordinate	
functions, Natural frame fields, Euclidean coordinate functions, Directional derivative.		

S25041 -RB7	Elements of Differential Geometry, Millman, R. and Parker, G. D	1977	Prentice-Hall of India Pvt. Ltd.
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25041 -CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25041-WL1	NPTEL, SWAYAM		

S25042: Functional Analysis

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik -422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25042	Functional Analysis	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete: - BSC/BA with Mathematics or equivalent from a recognized University/Board.	After successful completion of this course, student should be able to - Know the concepts of normed spaces, Banach space and Hilbert spaces - Explain how the notion of norm induces metric on a linear space and then think of sequences, continuity and completeness over linear spaces - Apply uniform boundedness principal, HahnBanach theorem for solution of differential equations.

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Banach Spaces Continuous Linear Transformation The Hahn Banach Theorem The Natural Embedding of \mathbf{N} in $\mathrm{N}^{* *}$	$\begin{aligned} & \text { CR } 01 \\ & \text { MLs } \\ & \text { 01-20 } \end{aligned}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & \hline 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	The Open Mapping Theorem The Conjugate of an Operator Hilbert Spaces Orthogonal Complements, Orthonormal Sets	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	The Conjugate Space H^{*} The Adjoint of an Operator Different Types of Operators Projections	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Spectral Resolution of T Matrices The Determinant and Spectrum of an Operator The Spectral Theorem	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR

Detailed Syllabus

S25042-RB5	Introductory Functional Analysis with Applications Kreyszig	1966	John Wiley \& Sons
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25042 -CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25042-WL1			

S25043: Classical Mechanics

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik -422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25043	Classical Mechanics	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete:	After successful completion of this course, student should be able to
•BSc/BA with Mathematics or equivalent from a recognized University/Board.	Explain Euler's variational principles and will use to solve real life problems.
Apply D'Alembert's Principle, Lagrange's equation,	
Hamiltonians Principle, Hamilton's equation and	
Hamilton Jacobi equation to form differential	
equation as well as its solution of various real	
existing systems.	

Units

UN	Name of the Unit (Updated as per CM ebook--- Dr Karade Sir)	CSs	Questions
$\begin{aligned} & 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Mechanics of System of Particles D'Alembert's Principle and Lagrange's Equations Central Force Motion Kepler's Laws and Virial Theorem	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR
$\begin{aligned} & \hline 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Calculus of Variation Euler's Equation and its Applications Hamilton's Principle Hamilton's Equation of Motion	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Routh Procedure and the Least Action Principle Canonical Transformations Invariance under Canonical Transformations Lagrange and Poission Brackets	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on each CR
$\begin{aligned} & \hline 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Rigid Body Motion- Rotations in Plane and Space Eulerian Angles A Moving Coordinate Frame Rotational Dynamics of a Rigid Body	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ , each of 5 marks, on each CR

UN	Detailed Syllabus of the Unit \{updated as per CM ebook \}				CR
1-1	Mechanics of a System of Particles: Mechanics of a particle, Mechanics of a system of particles, Degrees of freedom and generalized coordinates.				CR 01
1-2	D'Alembert's Principle and Lagrange's Equations: D'Alembert's principle, Derivation of Lagrange's equations for conservative system, Generalized potential, Rayleigh's dissipation function				
1-3	Central Force Motion: Equivalent one body problem, Central force field, Motion in one dimension, Classification of central orbits, Differential equation for the orbit, Integrable power law force field				
1-4	Kepler's Laws and Virial Theorem: Kepler's first law, Kepler's second law, Kepler's third law, Virial theorem				
2-1	Calculus of Variation: Preliminaries, Functional, Continuity of a functional				CR 02
2-2	Euler's Equation and its Applications: Variation of $\mathrm{y}(\mathrm{x})$ and $\mathrm{I}[\mathrm{y}(\mathrm{x})]$, An elementary problem in the CV, Invariance of Euler equation, Applications of Euler equation.				
2-3	Hamilton's Principle: Hamilton's principle for conservative system, Extension of Hamilton's principle to nonconservative holonomic system, Lagrange's equation for nonholonomic conservative systems.				
2-4	Hamilton's Equation of Motion: Derivation of the Hamilton's canonical equations, Hamilton's equations from variational principle.				
3-1	Routh Procedure and the Least Action Principle: Routhian of a mechanical system, The least action principle.				CR 03
3-2	Canonical Transformations: Some transformations, Canonical or contact transformations, Generating function of a canonical transformation.				
3-3	Invariance under Canonical Transformations: Bilinear covariant of the Pfaffian differential form, Theorem of Poincare, Infinitesimal canonical transformation				
3-4	Lagrange and Poission Brackets: Lagrange bracket, Poisson bracket, Equations of motion in Poisson bracket, Canonical invariance of the Poisson bracket, Jacobi identity, Angular momentum and Poisson brackets, Relation between Lagrange and Poisson brackets				
4-1	Rigid Body Motion- Rotations in Plane and Space: Preliminaries, Rotations in the plane, Rotations in 3space.				CR 04
4-2	The Euler Angles: Transformation matrix in terms of Euler angles, The Euler's theorem, Finite rotations, Infinitesimal rotations.				
4-3	A Moving Coordinate Frame: Translational accelerated frame, A rotating coordinate frame, Acceleration in a rotating system, Application to the rotating earth				
4-4	Rotational Dynamics of a Rigid Body: Mathematical back ground, Angular momentum and inertia tensor, Principal axes, The Euler equations of motion.				
Learning Resource Details					
	LR Code	Title Author	Edition Year	ISBN Publisher	
Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination					
CW-S25043					
Text-Books					
S25043-T01					
Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!					
S25043 -RB1		Classical Mechanics, H. Goldstein	1980	Narosa	
S25043 -RB2		Classical Mechanics, Gupta, Kumar, Sharma	2006	Pragati	
S25043 -RB3		Calculus of variations with application to Physics \& Engineering, Robert Weinstock	1952	McGrow-Hill book comp.	

S25043 -RB4	A treatise on Classical Mechanics T M Karade and Nilay T Karade	2019	Sonu Nilu Publication, Nagpur
S25043 -RB5	Problem Book in Classical Mechanics L N Katkar	2014	Narosa Publication, New Delhi
CD / DVD: Explore additional details and reinforce learning, with this optional learning resource!			
S25043-CD1			
Web Links: Explore additional details and reinforce learning, with this optional learning resource!			
S25043-WL1			

S25044: CRYPTOGRAPHY

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25044	Cryptography	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
	After successful completion of this course, student should
For successful completion of this course, student should	
have successfully complete:	
be able to	
BSC/BA with Mathematics or equivalent from a recognized University/Board.	Use various primality tests, encryption and decryption algorithms

UNITS

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Some topics in Elementary Number Theory Time Estimates for doing Arithmetic Divisibility and the Euclidean Algorithm Congruences Some Applications to Factoring	$\begin{gathered} \text { CR } 01 \\ \text { MLs } \\ 01-20 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on eachCR
$\begin{aligned} & 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Finite fields and Quadratic Residues Finite Fields Quadratic Residues and Quadratic Reciprocity Some Simple Cryptosystems Enciphering Matrices	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on eachCR
$\begin{aligned} & 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Public Key, Primality and Factoring The Idea of Public Key Cryptography RSA Cryptosystem Discrete Log Pseudoprimes, The rho method	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on eachCR
$\begin{aligned} & 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	Elliptic Curves Basic Facts Elliptic Curve Cryptosystems Elliptic Curve Primality Test Elliptic Curve Factorization	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on eachCR

Detailed Syllabus

UN	Detailed Syllabus of the Unit (Red colour content to be deleted as repeated in Number Theory...Add new contents, ebook author should take responsibility)	CR
1-1	Time Estimates for doing Arithmetic: Numbers in different bases, Number of digits, bit operations, The bigO notation	CR 01
1-2	Divisibility and the Euclidean Algorithm: Divisors and divisibility, The Euclidean algorithm	
1-3	Congruences: Basic Properties, Fermat's little theorem, Chinese Reminder theorem, Modular exponentiation by the repeated squaring method	
1-4	Some Applications to Factoring: Factoring certain types of large integers	
2-1	Finite Fields: Existence of multiplicative generators of finite fields, Existence and uniqueness of finite fields with prime power number of elements	CR 02
2-2	Quadratic Residues and Quadratic Reciprocity: Roots of unity, Quadratic Residues, The Legendre symbol, Law of quadratic Reciprocity, The Jacobi symbol, Square roots modulo p	
2-3	Some Simple Cryptosystems: Basic Notions with Examples	
2-4	Enciphering Matrices: Linear algebra modulo N, Affine enciphering transformations	
3-1	The idea of public key cryptography: Classical verses public key, Hash function.	CR 03
3-2	RSA Cryptosystem: Definition, Algorithm and example	
3-3	Discrete Log: Definition, The Diffie-Hellman key exchange system, The ElGamal cryptosystem, Algorithms for discrete log problem-Shank's algorithm, The Pollard rho algorithm	
3-4	Pseudoprimes, The rho method: Definition, Carmichael number, Euler pseudoprimes, Strong pseudoprimes, Miller-Rabin primality test, The rho method	
4-1	Basic Facts: Definition of elliptic curve over R, Points of finite order, Elliptic curves over a finite field.	CR 04
4-2	Elliptic Curve Cryptosystems: Multiples of points, Analog of the Diffie-Hellman key exchange, Analog of EIGamal	
4-3	Elliptic Curve Primality Test: Test due to Pocklington, Elliptic curve primality test	
4-4	Elliptic Curve Factorization: Pollard's p-1 method, Elliptic curves-reduction modulo n	

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher

Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination

CW-S25044			
Text-Books			
S25044-T01			
Reference-Books: Explore additional details and reinforce learning, with this optional learning resource!			
S25044 -RB1	A Course in Number Theory and Cryptography, Neal Koblitz	$\begin{aligned} & 1994 \\ & 3^{\text {rd }} \quad \text { Indian } \\ & \text { Reprint, } \\ & 2008 \end{aligned}$	978-81-8128-230-9, Springer
S25044 -RB2	Cryptography Theory and Practice, Douglas Stinson	2006 $3^{\text {rd }}$ Indian Reprint, 2015	1-58488-508-4
S25044 -RB3	An Introduction to Mathematical Cryptography, J. Hoffstein, J. Pipher, J. H. Silverman	$\begin{array}{ll} \hline 2^{\text {nd }} & \text { Ed, }, \\ 2014 & \end{array}$	978-1-4939-1710-5, Springer
S25044 -RB4	Introduction to Cryptography, J. A. Buchmann,	$\begin{aligned} & 2001, \\ & 2^{\text {nd }} \text { Ed } \\ & \text { (Indian } \\ & \text { Reprint, } \\ & 2005 \text {) } \\ & \hline \end{aligned}$	$\begin{aligned} & 81-8128-232-9, \\ & \text { Springer } \end{aligned}$

| CD / DVD: Explore additional details and reinforce learning, with this optional learning resource! | | |
| :---: | :---: | :---: | :---: |
| S25044-CD1 | | |
| Web Links: Explore additional details and reinforce learning, with this optional learning resource! | | |
| S25044-WL1 | | |

S25045: Topics in Fuzzy Mathematics

Programme Information

SN	Description	Details
1	University	Yashwantrao Chavan Maharashtra Open University Nashik - 422 222, Maharashtra, India Website: http://www.ycmou.ac.in/and http://ycmou.digitaluniversity.ac/
2	School	School of Architecture, Science and Technology
3	Discipline	Science
4	Level	PG
5	Course Used in	V57: M.Sc.(Maths)

Course Information

Sem	Code	Course Name	CR	CST	ST	CA	EE	TM	Type
01	S25045	Topics in Fuzzy Mathematics	4	12	120	20	80	100	T

Presumed Knowledge and Learning Objectives

Presumed Knowledge	Learning Objectives
For successful completion of this course, student should have successfully complete: - BSc/BA with Mathematics or equivalent from a recognized University/Board.	After successful completion of this course, student should be able to - Apply the concepts of fuzzy sets, algebra of fuzzy sets and extension principal. - Explain generalize notions of fuzzy union, intersection and fuzzy complementation and their properties. - Apply fuzzy relations, fuzzy arithmetic's, fuzzy relation equations and fuzzy logic for real life problems

Units

UN	Name of the Unit	CSs	Questions
$\begin{aligned} & \hline 01-01 \\ & 01-02 \\ & 01-03 \\ & 01-04 \end{aligned}$	Fuzzy Sets and Crisp Sets Convex Fuzzy Sets Extension Principle Fuzzy Complementation	$\begin{aligned} & \text { CR } 01 \\ & \text { MLs } \\ & \text { 01-20 } \end{aligned}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on eachCR
$\begin{aligned} & \hline 02-01 \\ & 02-02 \\ & 02-03 \\ & 02-04 \end{aligned}$	Fuzzy Intersections and Unions Dual triplets and Aggregation operations Fuzzy Arithmetic Lattice of Fuzzy Numbers and Fuzzy Equations	$\begin{gathered} \text { CR } 02 \\ \text { MLs } \\ 21-40 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on eachCR
$\begin{aligned} & \hline 03-01 \\ & 03-02 \\ & 03-03 \\ & 03-04 \end{aligned}$	Fuzzy Relations Fuzzy Equivalence Relations Composition of Fuzzy Relations Fuzzy Relation Equations	$\begin{gathered} \text { CR } 03 \\ \text { MLs } \\ 41-60 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on eachCR
$\begin{aligned} & 04-01 \\ & 04-02 \\ & 04-03 \\ & 04-04 \end{aligned}$	More Fuzzy Relations Equations and Approximate Solutions Fuzzy Propositions Fuzzy Quantifiers Approximate Reasoning	$\begin{gathered} \text { CR } 04 \\ \text { MLs } \\ 61-80 \end{gathered}$	Student is required to answer 4 of 5 SAQ, each of 5 marks, on eachCR

UN	Detailed Syllabus of the Unit (Add fuzzy logic)	CR
1-1	Fuzzy Sets and Crisp Sets: Definitions, α-cuts, Basic Operations on Fuzzy Sets, cardinality, degree of subsethood, types of fuzzy sets, Cartesian products, algebraic products bounded sum and difference.	CR 01
1-2	Convex Fuzzy Sets: Properties of α-cuts, Convex fuzzy sets, Decomposition theorems	
1-3	Extension principle: Image and Pre-image of fuzzy sets under crisp function, Properties with α-cuts, Extension of the principle for pair of sets	
1-4	Fuzzy Complementation: Definition Examples, Equilibrium and dual points with respect to fuzzy complement, Increasing and Decreasing Generators, Characterization Theorem of Fuzzy Complements, More Examples of Fuzzy Complements.	
2-1	Fuzzy Intersections and Unions: Definition and Examples of fuzzy intersections or t-norms, Characterization theorems for t-norms, Definition and examples of fuzzy unions or t-conorms, Characterization theorems for t-conorms.	CR 02
2-2	Dual Triplets and Aggregation Operations: Dual triplets, characterization theorems for dual triplets, Aggregation operations and their properties.	
2-3	Fuzzy Arithmetic: Fuzzy Numbers, Types of Fuzzy Numbers, Elements of fuzzy arithmetic, Interval arithmetic, sum, difference, multiplications of fuzzy numbers, Lattice of fuzzy numbers.	
2-4	Lattice of Fuzzy Numbers and Fuzzy Equations: Maximum and Minimum of fuzzy numbers, Ordering on fuzzy numbers, Equations of the type $A+X=B$ and $A \cdot X=B$ with A, B are fuzzy numbers.	
3-1	Fuzzy Relations: Fuzzy Relations, Binary fuzzy relations, Composition of fuzzy relations, Max-min closure and its extension.	CR 03
3-2	Fuzzy Equivalence Relations: Definition and examples, Fuzzy computability relations, Fuzzy ordering.	
3-3	Composition of Fuzzy Relations: sup-t composition of fuzzy relations, inf- ω_{i} compositions, relation between sup-t and inf- ω_{i} compositions of fuzzy binary operations.	
3-4	Fuzzy Relation Equations: max-min relation equations, sup-t relation equations.	
4-1	More Fuzzy Relations Equations and Approximate Solutions: inf- ω_{i} relation equations, Approximate solutions of fuzzy relation equations, Equality and solvability indices.	CR 04
4-2	Fuzzy Propositions: Unconditional and unqualified fuzzy propositions, Unconditional and qualified fuzzy propositions, Conditional and unqualified fuzzy propositions, Conditional and qualified fuzzy propositions, Truth values of compound fuzzy propositions.	
4-3	Fuzzy Quantifiers: Fuzzy Quantifiers, Linguistic hedges, Inference from conditional fuzzy propositions, Inference from conditional and qualified fuzzy propositions, Inference from quantified fuzzy propositions.	
4-4	Approximate Reasoning: Fuzzy Implications Definition and examples, Types of fuzzy propositions, Selection of fuzzy implications, Multi conditional approximate reasoning, Role of fuzzy relational equations.	

Learning Resource Details

LR Code	Title Author	Edition Year	ISBN Publisher

Course Website Link for (1) Mobile and Online Lectures, (2) Discussion Forum for online interaction and (3) Self-Test for each CR Block, Continuous Assessment Test and End Examination

| CW-S25045 | | | |
| :---: | :--- | :--- | :--- | :--- |
| Text-Books | | | |
| S25045-T01 | | | |
| Reference-Books: Explore additional details and reinforce learning, with this optional learning resource! | | | |
| S25045 -RB1 | Fuzzy Sets and Fuzzy Logic Theory and Applications,
 George J. Klir, Bo Yuan, | 2000 | PHI, Ltd.
 $0-13-101171-5$ |
| S25045 -RB2 | Fuzzy Logic with Engineering Applications,
 T. J. Ross, | 2010 | McGraw Hill,
 International Editions, |
| S25045 -RB3 | Fuzzy Sets Theory- and its Applications
 H J Zimmermann | 1985 | Springer |
| S25045 -RB4 | | | |

| CD / DVD: Explore additional details and reinforce learning, with this optional learning resource! | | |
| :---: | :---: | :---: | :---: |
| S25045-CD1 | | |
| Web Links: Explore additional details and reinforce learning, with this optional learning resource! | | |
| S25045-WL1 | | |

End of Document

